The Stacks project

Lemma 34.4.11. Let $S$ be a scheme. Let $\mathit{Sch}_{\acute{e}tale}$ be a big étale site containing $S$. The functor $(\textit{Aff}/S)_{\acute{e}tale}\to (\mathit{Sch}/S)_{\acute{e}tale}$ is special cocontinuous and induces an equivalence of topoi from $\mathop{\mathit{Sh}}\nolimits ((\textit{Aff}/S)_{\acute{e}tale})$ to $\mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{\acute{e}tale})$.

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition 7.29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.29.1. Denote the inclusion functor $u : (\textit{Aff}/S)_{\acute{e}tale}\to (\mathit{Sch}/S)_{\acute{e}tale}$. Being cocontinuous just means that any étale covering of $T/S$, $T$ affine, can be refined by a standard étale covering of $T$. This is the content of Lemma 34.4.4. Hence (1) holds. We see $u$ is continuous simply because a standard étale covering is a étale covering. Hence (2) holds. Parts (3) and (4) follow immediately from the fact that $u$ is fully faithful. And finally condition (5) follows from the fact that every scheme has an affine open covering. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 021E. Beware of the difference between the letter 'O' and the digit '0'.