The Stacks project

Lemma 7.29.1. Let $\mathcal{C}$, $\mathcal{D}$ be sites. Let $u : \mathcal{C} \to \mathcal{D}$ be a functor. Assume that

  1. $u$ is cocontinuous,

  2. $u$ is continuous,

  3. given $a, b : U' \to U$ in $\mathcal{C}$ such that $u(a) = u(b)$, then there exists a covering $\{ f_ i : U'_ i \to U'\} $ in $\mathcal{C}$ such that $a \circ f_ i = b \circ f_ i$,

  4. given $U', U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and a morphism $c : u(U') \to u(U)$ in $\mathcal{D}$ there exists a covering $\{ f_ i : U_ i' \to U'\} $ in $\mathcal{C}$ and morphisms $c_ i : U_ i' \to U$ such that $u(c_ i) = c \circ u(f_ i)$, and

  5. given $V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ there exists a covering of $V$ in $\mathcal{D}$ of the form $\{ u(U_ i) \to V\} _{i \in I}$.

Then the morphism of topoi

\[ g : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \longrightarrow \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \]

associated to the cocontinuous functor $u$ by Lemma 7.21.1 is an equivalence.

Proof. Assume $u$ satisfies properties (1) – (5). We will show that the adjunction mappings

\[ \mathcal{G} \longrightarrow g_*g^{-1}\mathcal{G} \quad \text{and}\quad g^{-1}g_*\mathcal{F} \longrightarrow \mathcal{F} \]

are isomorphisms.

Note that Lemma 7.21.5 applies and we have $g^{-1}\mathcal{G}(U) = \mathcal{G}(u(U))$ for any sheaf $\mathcal{G}$ on $\mathcal{D}$. Next, let $\mathcal{F}$ be a sheaf on $\mathcal{C}$, and let $V$ be an object of $\mathcal{D}$. By definition we have $g_*\mathcal{F}(V) = \mathop{\mathrm{lim}}\nolimits _{u(U) \to V} \mathcal{F}(U)$. Hence

\[ g^{-1}g_*\mathcal{F}(U) = \mathop{\mathrm{lim}}\nolimits _{U', u(U') \to u(U)} \mathcal{F}(U') \]

where the morphisms $\psi : u(U') \to u(U)$ need not be of the form $u(\alpha )$. The category of such pairs $(U', \psi )$ has a final object, namely $(U, \text{id})$, which gives rise to the map from the limit into $\mathcal{F}(U)$. Let $(s_{(U', \psi )})$ be an element of the limit. We want to show that $s_{(U', \psi )}$ is uniquely determined by the value $s_{(U, \text{id})} \in \mathcal{F}(U)$. By property (4) given any $(U', \psi )$ there exists a covering $\{ U'_ i \to U'\} $ such that the compositions $u(U'_ i) \to u(U') \to u(U)$ are of the form $u(c_ i)$ for some $c_ i : U'_ i \to U$ in $\mathcal{C}$. Hence

\[ s_{(U', \psi )}|_{U'_ i} = c_ i^*(s_{(U, \text{id})}). \]

Since $\mathcal{F}$ is a sheaf it follows that indeed $s_{(U', \psi )}$ is determined by $s_{(U, \text{id})}$. This proves uniqueness. For existence, assume given any $s \in \mathcal{F}(U)$, $\psi : u(U') \to u(U)$, $\{ f_ i : U_ i' \to U'\} $ and $c_ i : U_ i' \to U$ such that $\psi \circ u(f_ i) = u(c_ i)$ as above. We claim there exists a (unique) element $s_{(U', \psi )} \in \mathcal{F}(U')$ such that

\[ s_{(U', \psi )}|_{U'_ i} = c_ i^*(s). \]

Namely, a priori it is not clear the elements $c_ i^*(s)|_{U_ i' \times _{U'} U_ j'}$ and $c_ j^*(s)|_{U_ i' \times _{U'} U_ j'}$ agree, since the diagram

\[ \xymatrix{ U_ i' \times _{U'} U_ j' \ar[r]_-{\text{pr}_2} \ar[d]_{\text{pr}_1} & U_ j' \ar[d]^{c_ j} \\ U_ i' \ar[r]^{c_ i} & U} \]

need not commute. But condition (3) of the lemma guarantees that there exist coverings $\{ f_{ijk} : U'_{ijk} \to U_ i' \times _{U'} U_ j'\} _{k \in K_{ij}}$ such that $c_ i \circ \text{pr}_1 \circ f_{ijk} = c_ j \circ \text{pr}_2 \circ f_{ijk}$. Hence

\[ f_{ijk}^* \left(c_ i^*s|_{U_ i' \times _{U'} U_ j'}\right) = f_{ijk}^* \left(c_ j^*s|_{U_ i' \times _{U'} U_ j'}\right) \]

Hence $c_ i^*(s)|_{U_ i' \times _{U'} U_ j'} = c_ j^*(s)|_{U_ i' \times _{U'} U_ j'}$ by the sheaf condition for $\mathcal{F}$ and hence the existence of $s_{(U', \psi )}$ also by the sheaf condition for $\mathcal{F}$. The uniqueness guarantees that the collection $(s_{(U', \psi )})$ so obtained is an element of the limit with $s_{(U, \psi )} = s$. This proves that $g^{-1}g_*\mathcal{F} \to \mathcal{F}$ is an isomorphism.

Let $\mathcal{G}$ be a sheaf on $\mathcal{D}$. Let $V$ be an object of $\mathcal{D}$. Then we see that

\[ g_*g^{-1}\mathcal{G}(V) = \mathop{\mathrm{lim}}\nolimits _{U, \psi : u(U) \to V} \mathcal{G}(u(U)) \]

By the preceding paragraph we see that the value of the sheaf $g_*g^{-1}\mathcal{G}$ on an object $V$ of the form $V = u(U)$ is equal to $\mathcal{G}(u(U))$. (Formally, this holds because we have $g^{-1}g_*g^{-1} \cong g^{-1}$, and the description of $g^{-1}$ given at the beginning of the proof; informally just by comparing limits here and above.) Hence the adjunction mapping $\mathcal{G} \to g_*g^{-1}\mathcal{G}$ has the property that it is a bijection on sections over any object of the form $u(U)$. Since by axiom (5) there exists a covering of $V$ by objects of the form $u(U)$ we see easily that the adjunction map is an isomorphism. $\square$

Comments (0)

There are also:

  • 7 comment(s) on Section 7.29: Morphisms of topoi

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03A0. Beware of the difference between the letter 'O' and the digit '0'.