Definition 35.2.3. Let $S$ be a scheme. Let $\{ S_ i \to S\} _{i \in I}$ be a family of morphisms with target $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ S$-module. We call the unique descent on $\mathcal{F}$ datum with respect to the covering $\{ S \to S\} $ the trivial descent datum.
The pullback of the trivial descent datum to $\{ S_ i \to S\} $ is called the canonical descent datum. Notation: $(\mathcal{F}|_{S_ i}, can)$.
A descent datum $(\mathcal{F}_ i, \varphi _{ij})$ for quasi-coherent sheaves with respect to the given covering is said to be effective if there exists a quasi-coherent sheaf $\mathcal{F}$ on $S$ such that $(\mathcal{F}_ i, \varphi _{ij})$ is isomorphic to $(\mathcal{F}|_{S_ i}, can)$.
Comments (0)