Lemma 35.2.2. Let \mathcal{U} = \{ U_ i \to U\} _{i \in I} and \mathcal{V} = \{ V_ j \to V\} _{j \in J} be families of morphisms of schemes with fixed target. Let (g, \alpha : I \to J, (g_ i)) : \mathcal{U} \to \mathcal{V} be a morphism of families of maps with fixed target, see Sites, Definition 7.8.1. Let (\mathcal{F}_ j, \varphi _{jj'}) be a descent datum for quasi-coherent sheaves with respect to the family \{ V_ j \to V\} _{j \in J}. Then
The system
\left(g_ i^*\mathcal{F}_{\alpha (i)}, (g_ i \times g_{i'})^*\varphi _{\alpha (i)\alpha (i')}\right)is a descent datum with respect to the family \{ U_ i \to U\} _{i \in I}.
This construction is functorial in the descent datum (\mathcal{F}_ j, \varphi _{jj'}).
Given a second morphism (g', \alpha ' : I \to J, (g'_ i)) of families of maps with fixed target with g = g' there exists a functorial isomorphism of descent data
(g_ i^*\mathcal{F}_{\alpha (i)}, (g_ i \times g_{i'})^*\varphi _{\alpha (i)\alpha (i')}) \cong ((g'_ i)^*\mathcal{F}_{\alpha '(i)}, (g'_ i \times g'_{i'})^*\varphi _{\alpha '(i)\alpha '(i')}).
Comments (0)