The Stacks project

Lemma 35.3.2. Let $R \to A$ be a ring map. Given a descent datum $(N, \varphi )$ we can associate to it a cosimplicial $(A/R)_\bullet $-module $N_\bullet $1 by the rules $N_ n = N_{n, n}$ and given $\beta : [n] \to [m]$ setting we define

\[ N_\bullet (\beta ) = (\varphi ^ m_{\beta (n)m}) \circ N_{\beta , n} : N_{n, n} \longrightarrow N_{m, m}. \]

This procedure is functorial in the descent datum.

Proof. Here are the first few maps where $\varphi (n \otimes 1) = \sum \alpha _ i \otimes x_ i$

\[ \begin{matrix} \delta ^1_0 & : & N & \to & A \otimes N & n & \mapsto & 1 \otimes n \\ \delta ^1_1 & : & N & \to & A \otimes N & n & \mapsto & \sum \alpha _ i \otimes x_ i \\ \sigma ^0_0 & : & A \otimes N & \to & N & a_0 \otimes n & \mapsto & a_0n \\ \delta ^2_0 & : & A \otimes N & \to & A \otimes A \otimes N & a_0 \otimes n & \mapsto & 1 \otimes a_0 \otimes n \\ \delta ^2_1 & : & A \otimes N & \to & A \otimes A \otimes N & a_0 \otimes n & \mapsto & a_0 \otimes 1 \otimes n \\ \delta ^2_2 & : & A \otimes N & \to & A \otimes A \otimes N & a_0 \otimes n & \mapsto & \sum a_0 \otimes \alpha _ i \otimes x_ i \\ \sigma ^1_0 & : & A \otimes A \otimes N & \to & A \otimes N & a_0 \otimes a_1 \otimes n & \mapsto & a_0a_1 \otimes n \\ \sigma ^1_1 & : & A \otimes A \otimes N & \to & A \otimes N & a_0 \otimes a_1 \otimes n & \mapsto & a_0 \otimes a_1n \end{matrix} \]

with notation as in Simplicial, Section 14.5. We first verify the two properties $\sigma ^0_0 \circ \delta ^1_0 = \text{id}$ and $\sigma ^0_0 \circ \delta ^1_1 = \text{id}$. The first one, $\sigma ^0_0 \circ \delta ^1_0 = \text{id}$, is clear from the explicit description of the morphisms above. To prove the second relation we have to use the cocycle condition (because it does not hold for an arbitrary isomorphism $\varphi : N \otimes _ R A \to A \otimes _ R N$). Write $p = \sigma ^0_0 \circ \delta ^1_1 : N \to N$. By the description of the maps above we deduce that $p$ is also equal to

\[ p = \varphi \otimes \text{id} : N = (N \otimes _ R A) \otimes _{(A \otimes _ R A)} A \longrightarrow (A \otimes _ R N) \otimes _{(A \otimes _ R A)} A = N \]

Since $\varphi $ is an isomorphism we see that $p$ is an isomorphism. Write $\varphi (n \otimes 1) = \sum \alpha _ i \otimes x_ i$ for certain $\alpha _ i \in A$ and $x_ i \in N$. Then $p(n) = \sum \alpha _ ix_ i$. Next, write $\varphi (x_ i \otimes 1) = \sum \alpha _{ij} \otimes y_ j$ for certain $\alpha _{ij} \in A$ and $y_ j \in N$. Then the cocycle condition says that

\[ \sum \alpha _ i \otimes \alpha _{ij} \otimes y_ j = \sum \alpha _ i \otimes 1 \otimes x_ i. \]

This means that $p(n) = \sum \alpha _ ix_ i = \sum \alpha _ i\alpha _{ij}y_ j = \sum \alpha _ i p(x_ i) = p(p(n))$. Thus $p$ is a projector, and since it is an isomorphism it is the identity.

To prove fully that $N_\bullet $ is a cosimplicial module we have to check all 5 types of relations of Simplicial, Remark 14.5.3. The relations on composing $\sigma $'s are obvious. The relations on composing $\delta $'s come down to the cocycle condition for $\varphi $. In exactly the same way as above one checks the relations $\sigma _ j \circ \delta _ j = \sigma _ j \circ \delta _{j + 1} = \text{id}$. Finally, the other relations on compositions of $\delta $'s and $\sigma $'s hold for any $\varphi $ whatsoever. $\square$

[1] We should really write $(N, \varphi )_\bullet $.

Comments (0)

There are also:

  • 4 comment(s) on Section 35.3: Descent for modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 023H. Beware of the difference between the letter 'O' and the digit '0'.