Proposition 41.19.5. Let $A$, $B$ be Noetherian local rings. Let $f : A \to B$ be an étale homomorphism of local rings. Then $A$ is reduced if and only if $B$ is so.
Proof. It is clear from the faithful flatness of $A \to B$ that if $B$ is reduced, so is $A$. See also Algebra, Lemma 10.164.2. Conversely, assume $A$ is reduced. By assumption $B$ is a localization of a finite type $A$-algebra $B'$ at some prime $\mathfrak q$. After replacing $B'$ by a localization we may assume that $B'$ is étale over $A$, see Lemma 41.11.2. Then we see that Algebra, Lemma 10.163.7 applies to $A \to B'$ and $B'$ is reduced. Hence $B$ is reduced. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)