Lemma 65.5.10. Let S be a scheme contained in \mathit{Sch}_{fppf}. Let F be a presheaf of sets on (\mathit{Sch}/S)_{fppf}. The following are equivalent:
the diagonal F \to F \times F is representable,
for U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}) and any a \in F(U) the map a : h_ U \to F is representable,
for every pair U, V \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}) and any a \in F(U), b \in F(V) the fibre product h_ U \times _{a, F, b} h_ V is representable.
Comments (0)