The Stacks project

Lemma 63.6.2. A scheme is an algebraic space. More precisely, given a scheme $T \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$ the representable functor $h_ T$ is an algebraic space.

Proof. The functor $h_ T$ is a sheaf by our remarks in Section 63.2. The diagonal $h_ T \to h_ T \times h_ T = h_{T \times T}$ is representable because $(\mathit{Sch}/S)_{fppf}$ has fibre products. The identity map $h_ T \to h_ T$ is surjective ├ętale. $\square$


Comments (0)

There are also:

  • 5 comment(s) on Section 63.6: Algebraic spaces

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 025Z. Beware of the difference between the letter 'O' and the digit '0'.