Loading web-font TeX/Math/Italic

The Stacks project

Lemma 65.6.2. A scheme is an algebraic space. More precisely, given a scheme T \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}) the representable functor h_ T is an algebraic space.

Proof. The functor h_ T is a sheaf by our remarks in Section 65.2. The diagonal h_ T \to h_ T \times h_ T = h_{T \times T} is representable because (\mathit{Sch}/S)_{fppf} has fibre products. The identity map h_ T \to h_ T is surjective étale. \square


Comments (0)

There are also:

  • 5 comment(s) on Section 65.6: Algebraic spaces

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.