Remark 111.52.2. Let k be a field. Let \mathbf{P}^2_ k = \text{Proj}(k[X_0, X_1, X_2]). Any invertible sheaf on \mathbf{P}^2_ k is isomorphic to \mathcal{O}_{\mathbf{P}^2_ k}(n) for some n \in \mathbf{Z}. Recall that
is the degree n part of the polynomial ring. For a quasi-coherent sheaf \mathcal{F} on \mathbf{P}^2_ k set \mathcal{F}(n) = \mathcal{F} \otimes _{\mathcal{O}_{\mathbf{P}^2_ k}} \mathcal{O}_{\mathbf{P}^2_ k}(n) as usual.
Comments (0)