The Stacks project

Exercise 111.52.3. Let $k$ be a field. Let $\mathcal{E}$ be a vector bundle on $\mathbf{P}^2_ k$, i.e., a finite locally free $\mathcal{O}_{\mathbf{P}^2_ k}$-module. We say $\mathcal{E}$ is split if $\mathcal{E}$ is isomorphic to a direct sum invertible $\mathcal{O}_{\mathbf{P}^2_ k}$-modules.

  1. Show that $\mathcal{E}$ is split if and only if $\mathcal{E}(n)$ is split.

  2. Show that if $\mathcal{E}$ is split then $H^1({\mathbf{P}^2_ k}, \mathcal{E}(n)) = 0$ for all $n \in \mathbf{Z}$.

  3. Let

    \[ \varphi : \mathcal{O}_{\mathbf{P}^2_ k} \longrightarrow \mathcal{O}_{\mathbf{P}^2_ k}(1) \oplus \mathcal{O}_{\mathbf{P}^2_ k}(1) \oplus \mathcal{O}_{\mathbf{P}^2_ k}(1) \]

    be given by linear forms $L_0, L_1, L_2 \in \Gamma (\mathbf{P}^2_ k, \mathcal{O}_{\mathbf{P}^2_ k}(1))$. Assume $L_ i \not= 0$ for some $i$. What is the condition on $L_0, L_1, L_2$ such that the cokernel of $\varphi $ is a vector bundle? Why?

  4. Given an example of such a $\varphi $.

  5. Show that $\mathop{\mathrm{Coker}}(\varphi )$ is not split (if it is a vector bundle).


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02AY. Beware of the difference between the letter 'O' and the digit '0'.