The Stacks project

Proposition 10.9.10. Let $\overline{S}$ be the image of $S$ in $S'^{-1}A$, then $(SS')^{-1}A$ is isomorphic to $\overline{S}^{-1}(S'^{-1}A)$.

Proof. The map sending $x\in A$ to $x/1\in (SS')^{-1}A$ induces a map sending $x/s\in S'^{-1}A$ to $x/s \in (SS')^{-1}A$, by universal property. The image of the elements in $\overline{S}$ are invertible in $(SS')^{-1}A$. By the universal property we get a map $f : \overline{S}^{-1}(S'^{-1}A) \to (SS')^{-1}A$ which maps $(x/t')/(s/s')$ to $(x/t')\cdot (s/s')^{-1}$.

On the other hand, the map from $A$ to $\overline{S}^{-1}(S'^{-1}A)$ sending $x\in A$ to $(x/1)/(1/1)$ also induces a map $g : (SS')^{-1}A \to \overline{S}^{-1}(S'^{-1}A)$ which sends $x/ss'$ to $(x/s')/(s/1)$, by the universal property again. It is immediately checked that $f$ and $g$ are inverse to each other, hence they are both isomorphisms. $\square$

Comments (0)

There are also:

  • 4 comment(s) on Section 10.9: Localization

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02C6. Beware of the difference between the letter 'O' and the digit '0'.