Lemma 10.150.4. Let $R \to S$ be a ring map. If $R \to S$ is unramified, then there exists an idempotent $e \in S \otimes _ R S$ such that $S \otimes _ R S \to S$ is isomorphic to $S \otimes _ R S \to (S \otimes _ R S)_ e$.

**Proof.**
Let $J = \mathop{\mathrm{Ker}}(S \otimes _ R S \to S)$. By assumption $J/J^2 = 0$, see Lemma 10.130.13. Since $S$ is of finite type over $R$ we see that $J$ is finitely generated, namely by $x_ i \otimes 1 - 1 \otimes x_ i$, where $x_ i$ generate $S$ over $R$. We win by Lemma 10.20.5.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)