Lemma 10.130.13. Let $R \to S$ be a ring map. Let $J = \mathop{\mathrm{Ker}}(S \otimes _ R S \to S)$ be the kernel of the multiplication map. There is a canonical isomorphism of $S$-modules $\Omega _{S/R} \to J/J^2$, $a \text{d} b \mapsto a \otimes b - ab \otimes 1$.

**First proof.**
Apply Lemma 10.130.10 to the commutative diagram

where the left vertical arrow is $a \mapsto a \otimes 1$. We get the exact sequence $0 \to J/J^2 \to \Omega _{S \otimes _ R S/S} \otimes _{S \otimes _ R S} S \to \Omega _{S/S} \to 0$. By Lemma 10.130.5 the term $\Omega _{S/S}$ is $0$, and we obtain an isomorphism between the other two terms. We have $\Omega _{S \otimes _ R S/S} = \Omega _{S/R} \otimes _ S (S \otimes _ R S)$ by Lemma 10.130.12 as $S \to S \otimes _ R S$ is the base change of $R \to S$ and hence

We omit the verification that the map is given by the rule of the lemma. $\square$

**Second proof.**
First we show that the rule $a \text{d} b \mapsto a \otimes b - ab \otimes 1$ is well defined. In order to do this we have to show that $\text{d}r$ and $a\text{d}b + b \text{d}a - d(ab)$ map to zero. The first because $r \otimes 1 - 1 \otimes r = 0$ by definition of the tensor product. The second because

is in $J^2$.

We construct a map in the other direction. We may think of $S \to S \otimes _ R S$, $a \mapsto a \otimes 1$ as the base change of $R \to S$. Hence we have $\Omega _{S \otimes _ R S/S} = \Omega _{S/R} \otimes _ S (S \otimes _ R S)$, by Lemma 10.130.12. At this point the sequence of Lemma 10.130.9 gives a map

We leave it to the reader to see it is the inverse of the map above. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #1694 by Jeroen Sijsling on

Comment #1742 by Johan on

There are also: