The Stacks project

Lemma 10.131.13. Let $R \to S$ be a ring map. Let $J = \mathop{\mathrm{Ker}}(S \otimes _ R S \to S)$ be the kernel of the multiplication map. There is a canonical isomorphism of $S$-modules $\Omega _{S/R} \to J/J^2$, $a \text{d} b \mapsto a \otimes b - ab \otimes 1$.

First proof. Apply Lemma 10.131.10 to the commutative diagram

\[ \xymatrix{ S \otimes _ R S \ar[r] & S \\ S \ar[r] \ar[u] & S \ar[u] } \]

where the left vertical arrow is $a \mapsto a \otimes 1$. We get the exact sequence $0 \to J/J^2 \to \Omega _{S \otimes _ R S/S} \otimes _{S \otimes _ R S} S \to \Omega _{S/S} \to 0$. By Lemma 10.131.4 the term $\Omega _{S/S}$ is $0$, and we obtain an isomorphism between the other two terms. We have $\Omega _{S \otimes _ R S/S} = \Omega _{S/R} \otimes _ S (S \otimes _ R S)$ by Lemma 10.131.12 as $S \to S \otimes _ R S$ is the base change of $R \to S$ and hence

\[ \Omega _{S \otimes _ R S/S} \otimes _{S \otimes _ R S} S = \Omega _{S/R} \otimes _ S (S \otimes _ R S) \otimes _{S \otimes _ R S} S = \Omega _{S/R} \]

We omit the verification that the map is given by the rule of the lemma. $\square$

Second proof. First we show that the rule $a \text{d} b \mapsto a \otimes b - ab \otimes 1$ is well defined. In order to do this we have to show that $\text{d}r$ and $a\text{d}b + b \text{d}a - d(ab)$ map to zero. The first because $r \otimes 1 - 1 \otimes r = 0$ by definition of the tensor product. The second because

\[ (a \otimes b - ab \otimes 1) + (b \otimes a - ba \otimes 1) - (1 \otimes ab - ab \otimes 1) = (a \otimes 1 - 1\otimes a)(1\otimes b - b \otimes 1) \]

is in $J^2$.

We construct a map in the other direction. We may think of $S \to S \otimes _ R S$, $a \mapsto a \otimes 1$ as the base change of $R \to S$. Hence we have $\Omega _{S \otimes _ R S/S} = \Omega _{S/R} \otimes _ S (S \otimes _ R S)$, by Lemma 10.131.12. At this point the sequence of Lemma 10.131.9 gives a map

\[ J/J^2 \to \Omega _{S \otimes _ R S/ S} \otimes _{S \otimes _ R S} S = (\Omega _{S/R} \otimes _ S (S \otimes _ R S))\otimes _{S \otimes _ R S} S = \Omega _{S/R}. \]

We leave it to the reader to see it is the inverse of the map above. $\square$


Comments (2)

Comment #1694 by Jeroen Sijsling on

A shorter proof seems available by using 02HP: there one takes to be and to be . This is possible because as mentioned the maps and are in fact -algebra maps, with moreover the latter a right inverse of the former.

We get the exact sequence . By 00RP the term is trivial, and one obtains an isomorphism between the other two terms. One then rewrites as as in the current proof.

Comment #1742 by on

Dear Jeroen, I have added your proof as a first proof and left in the original as well. Thanks! For changes see here.

There are also:

  • 13 comment(s) on Section 10.131: Differentials

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00RW. Beware of the difference between the letter 'O' and the digit '0'.