The Stacks project

Lemma 10.131.12. Suppose that we have ring maps $R \to R'$ and $R \to S$. Set $S' = S \otimes _ R R'$, so that we obtain a diagram (10.131.4.1). Then the canonical map defined above induces an isomorphism $\Omega _{S/R} \otimes _ R R' = \Omega _{S'/R'}$.

Proof. Let $\text{d}' : S' = S \otimes _ R R' \to \Omega _{S/R} \otimes _ R R'$ denote the map $\text{d}'( \sum a_ i \otimes x_ i ) = \sum \text{d}(a_ i) \otimes x_ i$. It exists because the map $S \times R' \to \Omega _{S/R} \otimes _ R R'$, $(a, x)\mapsto \text{d}a \otimes _ R x$ is $R$-bilinear. This is an $R'$-derivation, as can be verified by a simple computation. We will show that $(\Omega _{S/R} \otimes _ R R', \text{d}')$ satisfies the universal property. Let $D : S' \to M'$ be an $R'$ derivation into an $S'$-module. The composition $S \to S' \to M'$ is an $R$-derivation, hence we get an $S$-linear map $\varphi _ D : \Omega _{S/R} \to M'$. We may tensor this with $R'$ and get the map $\varphi '_ D : \Omega _{S/R} \otimes _ R R' \to M'$, $\varphi '_ D(\eta \otimes x) = x\varphi _ D(\eta )$. It is clear that $D = \varphi '_ D \circ \text{d}'$. $\square$


Comments (2)

Comment #6275 by Abel Milor on

I think there is a small typo here: on the first line, it should be

There are also:

  • 13 comment(s) on Section 10.131: Differentials

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00RV. Beware of the difference between the letter 'O' and the digit '0'.