Lemma 10.131.11. Let R \to S be a ring map. Let I \subset S be an ideal. Let n \geq 1 be an integer. Set S' = S/I^{n + 1}. The map \Omega _{S/R} \to \Omega _{S'/R} induces an isomorphism
\Omega _{S/R} \otimes _ S S/I^ n \longrightarrow \Omega _{S'/R} \otimes _{S'} S/I^ n.
Comments (0)
There are also: