Lemma 29.28.3. Let
be a fibre product diagram of schemes. Assume f locally of finite type. Suppose that x' \in X', x = g'(x'), s' = f'(x') and s = g(s') = f(x). Then
\dim _ x(X_ s) = \dim _{x'}(X'_{s'}),
if F is the fibre of the morphism X'_{s'} \to X_ s over x, then
\dim (\mathcal{O}_{F, x'}) = \dim (\mathcal{O}_{X'_{s'}, x'}) - \dim (\mathcal{O}_{X_ s, x}) = \text{trdeg}_{\kappa (s)}(\kappa (x)) - \text{trdeg}_{\kappa (s')}(\kappa (x'))In particular \dim (\mathcal{O}_{X'_{s'}, x'}) \geq \dim (\mathcal{O}_{X_ s, x}) and \text{trdeg}_{\kappa (s)}(\kappa (x)) \geq \text{trdeg}_{\kappa (s')}(\kappa (x')).
given s', s, x there exists a choice of x' such that \dim (\mathcal{O}_{X'_{s'}, x'}) = \dim (\mathcal{O}_{X_ s, x}) and \text{trdeg}_{\kappa (s)}(\kappa (x)) = \text{trdeg}_{\kappa (s')}(\kappa (x')).
Comments (0)