Lemma 29.34.16. Let f : X \to Y, g : Y \to S be morphisms of schemes. Assume f is smooth. Then
0 \to f^*\Omega _{Y/S} \to \Omega _{X/S} \to \Omega _{X/Y} \to 0
(see Lemma 29.32.9) is short exact.
Lemma 29.34.16. Let f : X \to Y, g : Y \to S be morphisms of schemes. Assume f is smooth. Then
(see Lemma 29.32.9) is short exact.
Proof. The algebraic version of this lemma is the following: Given ring maps A \to B \to C with B \to C smooth, then the sequence
of Algebra, Lemma 10.131.7 is exact. This is Algebra, Lemma 10.139.1. \square
Comments (0)
There are also: