Lemma 35.14.4. Let

be a commutative diagram of morphisms of schemes. Assume that

$f$ is surjective, and syntomic (resp. smooth, resp. étale),

$p$ is syntomic (resp. smooth, resp. étale).

Then $q$ is syntomic (resp. smooth, resp. étale).

Lemma 35.14.4. Let

\[ \xymatrix{ X \ar[rr]_ f \ar[rd]_ p & & Y \ar[dl]^ q \\ & S } \]

be a commutative diagram of morphisms of schemes. Assume that

$f$ is surjective, and syntomic (resp. smooth, resp. étale),

$p$ is syntomic (resp. smooth, resp. étale).

Then $q$ is syntomic (resp. smooth, resp. étale).

**Proof.**
Combine Morphisms, Lemmas 29.30.16, 29.34.19, and 29.36.19 with Lemma 35.14.3 above.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)