Lemma 37.35.2. Let $S$ be a scheme. Let $s \in S$. Let $k/\kappa (s)$ be a finite separable field extension. Then there exists an étale neighbourhood $(U, u) \to (S, s)$ such that the field extension $\kappa (u)/\kappa (s)$ is isomorphic to $k/\kappa (s)$.
Proof. We may assume $S$ is affine. In this case the lemma follows from Algebra, Lemma 10.144.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: