Definition 10.121.3. Let $R$ be a Noetherian local domain of dimension $1$ with fraction field $K$. Let $V$ be a finite dimensional $K$-vector space. A lattice in $V$ is a finite $R$-submodule $M \subset V$ such that $V = K \otimes _ R M$.
Definition 10.121.3. Let $R$ be a Noetherian local domain of dimension $1$ with fraction field $K$. Let $V$ be a finite dimensional $K$-vector space. A lattice in $V$ is a finite $R$-submodule $M \subset V$ such that $V = K \otimes _ R M$.
Comments (0)
There are also: