Lemma 30.20.2. Given a morphism of schemes $f : X \to Y$, a quasi-coherent sheaf $\mathcal{F}$ on $X$, and a quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ Y$. Assume $Y$ locally Noetherian, $f$ proper, and $\mathcal{F}$ coherent. Then

is a graded $\mathcal{A} = \bigoplus _{n \geq 0} \mathcal{I}^ n$-module which is quasi-coherent and of finite type.

## Comments (0)