Proof.
Let c = \max \{ c_ p, c_{p + 1}\} , where c_ p, c_{p + 1} are the integers found in Lemma 30.20.3 for H^ p and H^{p + 1}.
Let us prove part (1). Consider the short exact sequence
0 \to I^ n\mathcal{F} \to \mathcal{F} \to \mathcal{F}/I^ n\mathcal{F} \to 0
From the long exact cohomology sequence we see that
\mathop{\mathrm{Ker}}( H^ p(X, \mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F}) ) = \mathop{\mathrm{Im}}( H^ p(X, I^ n\mathcal{F}) \to H^ p(X, \mathcal{F}) )
Hence by Lemma 30.20.3 part (2) we see that this is contained in I^{n - c}H^ p(X, \mathcal{F}) for n \geq c.
Note that part (3) implies part (2) by definition of the Mittag-Leffler systems.
Let us prove part (3). Fix an n. Consider the commutative diagram
\xymatrix{ 0 \ar[r] & I^ n\mathcal{F} \ar[r] & \mathcal{F} \ar[r] & \mathcal{F}/I^ n\mathcal{F} \ar[r] & 0 \\ 0 \ar[r] & I^{n + m}\mathcal{F} \ar[r] \ar[u] & \mathcal{F} \ar[r] \ar[u] & \mathcal{F}/I^{n + m}\mathcal{F} \ar[r] \ar[u] & 0 }
This gives rise to the following commutative diagram
\xymatrix{ H^ p(X, \mathcal{F}) \ar[r] & H^ p(X, \mathcal{F}/I^ n\mathcal{F}) \ar[r]_\delta & H^{p + 1}(X, I^ n\mathcal{F}) \ar[r] & H^{p + 1}(X, \mathcal{F}) \\ H^ p(X, \mathcal{F}) \ar[r] \ar[u]^1 & H^ p(X, \mathcal{F}/I^{n + m}\mathcal{F}) \ar[r] \ar[u]^\gamma & H^{p + 1}(X, I^{n + m}\mathcal{F}) \ar[u]^\alpha \ar[r]^-\beta & H^{p + 1}(X, \mathcal{F}) \ar[u]_1 }
with exact rows. By Lemma 30.20.3 part (4) the kernel of \beta is equal to the kernel of \alpha for m \geq c. By a diagram chase this shows that the image of \gamma is contained in the kernel of \delta which shows that part (3) is true (set k = n + m to get it).
\square
Comments (0)