Lemma 31.4.6. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent sheaf on $X$. The set of coherent subsheaves
has a maximal element $\mathcal{K}$. Setting $\mathcal{F}' = \mathcal{F}/\mathcal{K}$ we have the following
$\text{Supp}(\mathcal{F}') = \text{Supp}(\mathcal{F})$,
$\mathcal{F}'$ has no embedded associated points, and
there exists a dense open $U \subset X$ such that $U \cap \text{Supp}(\mathcal{F})$ is dense in $\text{Supp}(\mathcal{F})$ and $\mathcal{F}'|_ U \cong \mathcal{F}|_ U$.
Comments (0)
There are also: