Definition 42.68.2. Let R be a local ring with maximal ideal \mathfrak m and residue field \kappa . Let M be a finite length R-module. Say l = \text{length}_ R(M).
Given elements x_1, \ldots , x_ r \in M we denote \langle x_1, \ldots , x_ r \rangle = Rx_1 + \ldots + Rx_ r the R-submodule of M generated by x_1, \ldots , x_ r.
We will say an l-tuple of elements (e_1, \ldots , e_ l) of M is admissible if \mathfrak m e_ i \subset \langle e_1, \ldots , e_{i - 1} \rangle for i = 1, \ldots , l.
A symbol [e_1, \ldots , e_ l] will mean (e_1, \ldots , e_ l) is an admissible l-tuple.
An admissible relation between symbols is one of the following:
if (e_1, \ldots , e_ l) is an admissible sequence and for some 1 \leq a \leq l we have e_ a \in \langle e_1, \ldots , e_{a - 1}\rangle , then [e_1, \ldots , e_ l] = 0,
if (e_1, \ldots , e_ l) is an admissible sequence and for some 1 \leq a \leq l we have e_ a = \lambda e'_ a + x with \lambda \in R^*, and x \in \langle e_1, \ldots , e_{a - 1}\rangle , then
[e_1, \ldots , e_ l] = \overline{\lambda } [e_1, \ldots , e_{a - 1}, e'_ a, e_{a + 1}, \ldots , e_ l]where \overline{\lambda } \in \kappa ^* is the image of \lambda in the residue field, and
if (e_1, \ldots , e_ l) is an admissible sequence and \mathfrak m e_ a \subset \langle e_1, \ldots , e_{a - 2}\rangle then
[e_1, \ldots , e_ l] = - [e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l].
We define the determinant of the finite length R-module M to be
\det \nolimits _\kappa (M) = \left\{ \frac{\kappa \text{-vector space generated by symbols}}{\kappa \text{-linear combinations of admissible relations}} \right\}
Comments (2)
Comment #2609 by Ko Aoki on
Comment #2632 by Johan on