Loading web-font TeX/Math/Italic

The Stacks project

Definition 42.68.2. Let R be a local ring with maximal ideal \mathfrak m and residue field \kappa . Let M be a finite length R-module. Say l = \text{length}_ R(M).

  1. Given elements x_1, \ldots , x_ r \in M we denote \langle x_1, \ldots , x_ r \rangle = Rx_1 + \ldots + Rx_ r the R-submodule of M generated by x_1, \ldots , x_ r.

  2. We will say an l-tuple of elements (e_1, \ldots , e_ l) of M is admissible if \mathfrak m e_ i \subset \langle e_1, \ldots , e_{i - 1} \rangle for i = 1, \ldots , l.

  3. A symbol [e_1, \ldots , e_ l] will mean (e_1, \ldots , e_ l) is an admissible l-tuple.

  4. An admissible relation between symbols is one of the following:

    1. if (e_1, \ldots , e_ l) is an admissible sequence and for some 1 \leq a \leq l we have e_ a \in \langle e_1, \ldots , e_{a - 1}\rangle , then [e_1, \ldots , e_ l] = 0,

    2. if (e_1, \ldots , e_ l) is an admissible sequence and for some 1 \leq a \leq l we have e_ a = \lambda e'_ a + x with \lambda \in R^*, and x \in \langle e_1, \ldots , e_{a - 1}\rangle , then

      [e_1, \ldots , e_ l] = \overline{\lambda } [e_1, \ldots , e_{a - 1}, e'_ a, e_{a + 1}, \ldots , e_ l]

      where \overline{\lambda } \in \kappa ^* is the image of \lambda in the residue field, and

    3. if (e_1, \ldots , e_ l) is an admissible sequence and \mathfrak m e_ a \subset \langle e_1, \ldots , e_{a - 2}\rangle then

      [e_1, \ldots , e_ l] = - [e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l].
  5. We define the determinant of the finite length R-module M to be

    \det \nolimits _\kappa (M) = \left\{ \frac{\kappa \text{-vector space generated by symbols}}{\kappa \text{-linear combinations of admissible relations}} \right\}


Comments (2)

Comment #2609 by Ko Aoki on

Typo in the definition of an admissible tuple: "" should be replaced by "".


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.