Definition 42.68.2. Let $R$ be a local ring with maximal ideal $\mathfrak m$ and residue field $\kappa$. Let $M$ be a finite length $R$-module. Say $l = \text{length}_ R(M)$.

1. Given elements $x_1, \ldots , x_ r \in M$ we denote $\langle x_1, \ldots , x_ r \rangle = Rx_1 + \ldots + Rx_ r$ the $R$-submodule of $M$ generated by $x_1, \ldots , x_ r$.

2. We will say an $l$-tuple of elements $(e_1, \ldots , e_ l)$ of $M$ is admissible if $\mathfrak m e_ i \subset \langle e_1, \ldots , e_{i - 1} \rangle$ for $i = 1, \ldots , l$.

3. A symbol $[e_1, \ldots , e_ l]$ will mean $(e_1, \ldots , e_ l)$ is an admissible $l$-tuple.

4. An admissible relation between symbols is one of the following:

1. if $(e_1, \ldots , e_ l)$ is an admissible sequence and for some $1 \leq a \leq l$ we have $e_ a \in \langle e_1, \ldots , e_{a - 1}\rangle$, then $[e_1, \ldots , e_ l] = 0$,

2. if $(e_1, \ldots , e_ l)$ is an admissible sequence and for some $1 \leq a \leq l$ we have $e_ a = \lambda e'_ a + x$ with $\lambda \in R^*$, and $x \in \langle e_1, \ldots , e_{a - 1}\rangle$, then

$[e_1, \ldots , e_ l] = \overline{\lambda } [e_1, \ldots , e_{a - 1}, e'_ a, e_{a + 1}, \ldots , e_ l]$

where $\overline{\lambda } \in \kappa ^*$ is the image of $\lambda$ in the residue field, and

3. if $(e_1, \ldots , e_ l)$ is an admissible sequence and $\mathfrak m e_ a \subset \langle e_1, \ldots , e_{a - 2}\rangle$ then

$[e_1, \ldots , e_ l] = - [e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l].$
5. We define the determinant of the finite length $R$-module $M$ to be

$\det \nolimits _\kappa (M) = \left\{ \frac{\kappa \text{-vector space generated by symbols}}{\kappa \text{-linear combinations of admissible relations}} \right\}$

Comment #2609 by Ko Aoki on

Typo in the definition of an admissible tuple: "$\mathfrak m e_i \in \langle e_1, \ldots, e_{i - 1} \rangle$" should be replaced by "$\mathfrak m e_i \subset \langle e_1, \ldots, e_{i - 1} \rangle$".

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02P6. Beware of the difference between the letter 'O' and the digit '0'.