Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

The Stacks project

42.68 Appendix A: Alternative approach to key lemma

In this appendix we first define determinants \det _\kappa (M) of finite length modules M over local rings (R, \mathfrak m, \kappa ), see Subsection 42.68.1. The determinant \det _\kappa (M) is a 1-dimensional \kappa -vector space. We use this in Subsection 42.68.12 to define the determinant \det _\kappa (M, \varphi , \psi ) \in \kappa ^* of an exact (2, 1)-periodic complex (M, \varphi , \psi ) with M of finite length. In Subsection 42.68.26 we use these determinants to construct a tame symbol d_ R(a, b) = \det _\kappa (R/ab, a, b) for a pair of nonzerodivisors a, b \in R when R is Noetherian of dimension 1. Although there is no doubt that

d_ R(a, b) = \partial _ R(a, b)

where \partial _ R is as in Section 42.5, we have not (yet) added the verification. The advantage of the tame symbol as constructed in this appendix is that it extends (for example) to pairs of injective endomorphisms \varphi , \psi of a finite R-module M of dimension 1 such that \varphi (\psi (M)) = \psi (\varphi (M)). In Subsection 42.68.40 we relate Herbrand quotients and determinants. An easy to state version of the main result (Proposition 42.68.43) is the formula

-e_ R(M, \varphi , \psi ) = \text{ord}_ R(\det \nolimits _ K(M_ K, \varphi , \psi ))

when (M, \varphi , \psi ) is a (2, 1)-periodic complex whose Herbrand quotient e_ R (Definition 42.2.2) is defined over a 1-dimensonal Noetherian local domain R with fraction field K. We use this proposition to give an alternative proof of the key lemma (Lemma 42.6.3) for the tame symbol constructed in this appendix, see Lemma 42.68.46.

42.68.1 Determinants of finite length modules

The material in this section is related to the material in the paper [determinant] and to the material in the thesis [Joe].

Let (R, \mathfrak m, \kappa ) be a local ring. Let \varphi : M \to M be an R-linear endomorphism of a finite length R-module M. In More on Algebra, Section 15.120 we have already defined the determinant \det _\kappa (\varphi ) (and the trace and the characteristic polynomial) of \varphi relative to \kappa . In this section, we will construct a canonical 1-dimensional \kappa -vector space \det _\kappa (M) such that \det _\kappa (\varphi : M \to M) : \det _\kappa (M) \to \det _\kappa (M) is equal to multiplication by \det _\kappa (\varphi ). If M is annihilated by \mathfrak m, then M can be viewed as a finite dimension \kappa -vector space and then we have \det _\kappa (M) = \wedge ^ n_\kappa (M) where n = \dim _\kappa (M). Our construction will generalize this to all finite length modules over R and if R contains its residue field, then the determinant \det _\kappa (M) will be given by the usual determinant in a suitable sense, see Remark 42.68.9.

Definition 42.68.2. Let R be a local ring with maximal ideal \mathfrak m and residue field \kappa . Let M be a finite length R-module. Say l = \text{length}_ R(M).

  1. Given elements x_1, \ldots , x_ r \in M we denote \langle x_1, \ldots , x_ r \rangle = Rx_1 + \ldots + Rx_ r the R-submodule of M generated by x_1, \ldots , x_ r.

  2. We will say an l-tuple of elements (e_1, \ldots , e_ l) of M is admissible if \mathfrak m e_ i \subset \langle e_1, \ldots , e_{i - 1} \rangle for i = 1, \ldots , l.

  3. A symbol [e_1, \ldots , e_ l] will mean (e_1, \ldots , e_ l) is an admissible l-tuple.

  4. An admissible relation between symbols is one of the following:

    1. if (e_1, \ldots , e_ l) is an admissible sequence and for some 1 \leq a \leq l we have e_ a \in \langle e_1, \ldots , e_{a - 1}\rangle , then [e_1, \ldots , e_ l] = 0,

    2. if (e_1, \ldots , e_ l) is an admissible sequence and for some 1 \leq a \leq l we have e_ a = \lambda e'_ a + x with \lambda \in R^*, and x \in \langle e_1, \ldots , e_{a - 1}\rangle , then

      [e_1, \ldots , e_ l] = \overline{\lambda } [e_1, \ldots , e_{a - 1}, e'_ a, e_{a + 1}, \ldots , e_ l]

      where \overline{\lambda } \in \kappa ^* is the image of \lambda in the residue field, and

    3. if (e_1, \ldots , e_ l) is an admissible sequence and \mathfrak m e_ a \subset \langle e_1, \ldots , e_{a - 2}\rangle then

      [e_1, \ldots , e_ l] = - [e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l].
  5. We define the determinant of the finite length R-module M to be

    \det \nolimits _\kappa (M) = \left\{ \frac{\kappa \text{-vector space generated by symbols}}{\kappa \text{-linear combinations of admissible relations}} \right\}

We stress that always l = \text{length}_ R(M). We also stress that it does not follow that the symbol [e_1, \ldots , e_ l] is additive in the entries (this will typically not be the case). Before we can show that the determinant \det _\kappa (M) actually has dimension 1 we have to show that it has dimension at most 1.

Lemma 42.68.3. With notations as above we have \dim _\kappa (\det _\kappa (M)) \leq 1.

Proof. Fix an admissible sequence (f_1, \ldots , f_ l) of M such that

\text{length}_ R(\langle f_1, \ldots , f_ i\rangle ) = i

for i = 1, \ldots , l. Such an admissible sequence exists exactly because M has length l. We will show that any element of \det _\kappa (M) is a \kappa -multiple of the symbol [f_1, \ldots , f_ l]. This will prove the lemma.

Let (e_1, \ldots , e_ l) be an admissible sequence of M. It suffices to show that [e_1, \ldots , e_ l] is a multiple of [f_1, \ldots , f_ l]. First assume that \langle e_1, \ldots , e_ l\rangle \not= M. Then there exists an i \in [1, \ldots , l] such that e_ i \in \langle e_1, \ldots , e_{i - 1}\rangle . It immediately follows from the first admissible relation that [e_1, \ldots , e_ n] = 0 in \det _\kappa (M). Hence we may assume that \langle e_1, \ldots , e_ l\rangle = M. In particular there exists a smallest index i \in \{ 1, \ldots , l\} such that f_1 \in \langle e_1, \ldots , e_ i\rangle . This means that e_ i = \lambda f_1 + x with x \in \langle e_1, \ldots , e_{i - 1}\rangle and \lambda \in R^*. By the second admissible relation this means that [e_1, \ldots , e_ l] = \overline{\lambda }[e_1, \ldots , e_{i - 1}, f_1, e_{i + 1}, \ldots , e_ l]. Note that \mathfrak m f_1 = 0. Hence by applying the third admissible relation i - 1 times we see that

[e_1, \ldots , e_ l] = (-1)^{i - 1}\overline{\lambda } [f_1, e_1, \ldots , e_{i - 1}, e_{i + 1}, \ldots , e_ l].

Note that it is also the case that \langle f_1, e_1, \ldots , e_{i - 1}, e_{i + 1}, \ldots , e_ l\rangle = M. By induction suppose we have proven that our original symbol is equal to a scalar times

[f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ l]

for some admissible sequence (f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ l) whose elements generate M, i.e., with \langle f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ l\rangle = M. Then we find the smallest i such that f_{j + 1} \in \langle f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ i\rangle and we go through the same process as above to see that

[f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ l] = (\text{scalar}) [f_1, \ldots , f_ j, f_{j + 1}, e_{j + 1}, \ldots , \hat{e_ i}, \ldots , e_ l]

Continuing in this vein we obtain the desired result. \square

Before we show that \det _\kappa (M) always has dimension 1, let us show that it agrees with the usual top exterior power in the case the module is a vector space over \kappa .

Lemma 42.68.4. Let R be a local ring with maximal ideal \mathfrak m and residue field \kappa . Let M be a finite length R-module which is annihilated by \mathfrak m. Let l = \dim _\kappa (M). Then the map

\det \nolimits _\kappa (M) \longrightarrow \wedge ^ l_\kappa (M), \quad [e_1, \ldots , e_ l] \longmapsto e_1 \wedge \ldots \wedge e_ l

is an isomorphism.

Proof. It is clear that the rule described in the lemma gives a \kappa -linear map since all of the admissible relations are satisfied by the usual symbols e_1 \wedge \ldots \wedge e_ l. It is also clearly a surjective map. Since by Lemma 42.68.3 the left hand side has dimension at most one we see that the map is an isomorphism. \square

Lemma 42.68.5. Let R be a local ring with maximal ideal \mathfrak m and residue field \kappa . Let M be a finite length R-module. The determinant \det _\kappa (M) defined above is a \kappa -vector space of dimension 1. It is generated by the symbol [f_1, \ldots , f_ l] for any admissible sequence such that \langle f_1, \ldots f_ l \rangle = M.

Proof. We know \det _\kappa (M) has dimension at most 1, and in fact that it is generated by [f_1, \ldots , f_ l], by Lemma 42.68.3 and its proof. We will show by induction on l = \text{length}(M) that it is nonzero. For l = 1 it follows from Lemma 42.68.4. Choose a nonzero element f \in M with \mathfrak m f = 0. Set \overline{M} = M /\langle f \rangle , and denote the quotient map x \mapsto \overline{x}. We will define a surjective map

\psi : \det \nolimits _ k(M) \to \det \nolimits _\kappa (\overline{M})

which will prove the lemma since by induction the determinant of \overline{M} is nonzero.

We define \psi on symbols as follows. Let (e_1, \ldots , e_ l) be an admissible sequence. If f \not\in \langle e_1, \ldots , e_ l \rangle then we simply set \psi ([e_1, \ldots , e_ l]) = 0. If f \in \langle e_1, \ldots , e_ l \rangle then we choose an i minimal such that f \in \langle e_1, \ldots , e_ i \rangle . We may write e_ i = \lambda f + x for some unit \lambda \in R and x \in \langle e_1, \ldots , e_{i - 1} \rangle . In this case we set

\psi ([e_1, \ldots , e_ l]) = (-1)^ i \overline{\lambda }[\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l].

Note that it is indeed the case that (\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l) is an admissible sequence in \overline{M}, so this makes sense. Let us show that extending this rule \kappa -linearly to linear combinations of symbols does indeed lead to a map on determinants. To do this we have to show that the admissible relations are mapped to zero.

Type (a) relations. Suppose we have (e_1, \ldots , e_ l) an admissible sequence and for some 1 \leq a \leq l we have e_ a \in \langle e_1, \ldots , e_{a - 1}\rangle . Suppose that f \in \langle e_1, \ldots , e_ i\rangle with i minimal. Then i \not= a and \overline{e}_ a \in \langle \overline{e}_1, \ldots , \hat{\overline{e}_ i}, \ldots , \overline{e}_{a - 1}\rangle if i < a or \overline{e}_ a \in \langle \overline{e}_1, \ldots , \overline{e}_{a - 1}\rangle if i > a. Thus the same admissible relation for \det _\kappa (\overline{M}) forces the symbol [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] to be zero as desired.

Type (b) relations. Suppose we have (e_1, \ldots , e_ l) an admissible sequence and for some 1 \leq a \leq l we have e_ a = \lambda e'_ a + x with \lambda \in R^*, and x \in \langle e_1, \ldots , e_{a - 1}\rangle . Suppose that f \in \langle e_1, \ldots , e_ i\rangle with i minimal. Say e_ i = \mu f + y with y \in \langle e_1, \ldots , e_{i - 1}\rangle . If i < a then the desired equality is

(-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] = (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_{a - 1}, \overline{e}'_ a, \overline{e}_{a + 1}, \ldots , \overline{e}_ l]

which follows from \overline{e}_ a = \lambda \overline{e}'_ a + \overline{x} and the corresponding admissible relation for \det _\kappa (\overline{M}). If i > a then the desired equality is

(-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] = (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 1}, \overline{e}'_ a, \overline{e}_{a + 1}, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l]

which follows from \overline{e}_ a = \lambda \overline{e}'_ a + \overline{x} and the corresponding admissible relation for \det _\kappa (\overline{M}). The interesting case is when i = a. In this case we have e_ a = \lambda e'_ a + x = \mu f + y. Hence also e'_ a = \lambda ^{-1}(\mu f + y - x). Thus we see that

\psi ([e_1, \ldots , e_ l]) = (-1)^ i \overline{\mu } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] = \psi ( \overline{\lambda } [e_1, \ldots , e_{a - 1}, e'_ a, e_{a + 1}, \ldots , e_ l] )

as desired.

Type (c) relations. Suppose that (e_1, \ldots , e_ l) is an admissible sequence and \mathfrak m e_ a \subset \langle e_1, \ldots , e_{a - 2}\rangle . Suppose that f \in \langle e_1, \ldots , e_ i\rangle with i minimal. Say e_ i = \lambda f + x with x \in \langle e_1, \ldots , e_{i - 1}\rangle . We distinguish 4 cases:

Case 1: i < a - 1. The desired equality is

\begin{align*} & (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \\ & = (-1)^{i + 1} \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \end{align*}

which follows from the type (c) admissible relation for \det _\kappa (\overline{M}).

Case 2: i > a. The desired equality is

\begin{align*} & (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \\ & = (-1)^{i + 1} \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \end{align*}

which follows from the type (c) admissible relation for \det _\kappa (\overline{M}).

Case 3: i = a. We write e_ a = \lambda f + \mu e_{a - 1} + y with y \in \langle e_1, \ldots , e_{a - 2}\rangle . Then

\psi ([e_1, \ldots , e_ l]) = (-1)^ a \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_ l]

by definition. If \overline{\mu } is nonzero, then we have e_{a - 1} = - \mu ^{-1} \lambda f + \mu ^{-1}e_ a - \mu ^{-1} y and we obtain

\psi (-[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) = (-1)^ a \overline{\mu ^{-1}\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \overline{e}_{a + 1}, \ldots , \overline{e}_ l]

by definition. Since in \overline{M} we have \overline{e}_ a = \mu \overline{e}_{a - 1} + \overline{y} we see the two outcomes are equal by relation (a) for \det _\kappa (\overline{M}). If on the other hand \overline{\mu } is zero, then we can write e_ a = \lambda f + y with y \in \langle e_1, \ldots , e_{a - 2}\rangle and we have

\psi (-[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) = (-1)^ a \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_ l]

which is equal to \psi ([e_1, \ldots , e_ l]).

Case 4: i = a - 1. Here we have

\psi ([e_1, \ldots , e_ l]) = (-1)^{a - 1} \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \ldots , \overline{e}_ l]

by definition. If f \not\in \langle e_1, \ldots , e_{a - 2}, e_ a \rangle then

\psi (-[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) = (-1)^{a + 1}\overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \ldots , \overline{e}_ l]

Since (-1)^{a - 1} = (-1)^{a + 1} the two expressions are the same. Finally, assume f \in \langle e_1, \ldots , e_{a - 2}, e_ a \rangle . In this case we see that e_{a - 1} = \lambda f + x with x \in \langle e_1, \ldots , e_{a - 2}\rangle and e_ a = \mu f + y with y \in \langle e_1, \ldots , e_{a - 2}\rangle for units \lambda , \mu \in R. We conclude that both e_ a \in \langle e_1, \ldots , e_{a - 1} \rangle and e_{a - 1} \in \langle e_1, \ldots , e_{a - 2}, e_ a\rangle . In this case a relation of type (a) applies to both [e_1, \ldots , e_ l] and [e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l] and the compatibility of \psi with these shown above to see that both

\psi ([e_1, \ldots , e_ l]) \quad \text{and}\quad \psi ([e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l])

are zero, as desired.

At this point we have shown that \psi is well defined, and all that remains is to show that it is surjective. To see this let (\overline{f}_2, \ldots , \overline{f}_ l) be an admissible sequence in \overline{M}. We can choose lifts f_2, \ldots , f_ l \in M, and then (f, f_2, \ldots , f_ l) is an admissible sequence in M. Since \psi ([f, f_2, \ldots , f_ l]) = [f_2, \ldots , f_ l] we win. \square

Let R be a local ring with maximal ideal \mathfrak m and residue field \kappa . Note that if \varphi : M \to N is an isomorphism of finite length R-modules, then we get an isomorphism

\det \nolimits _\kappa (\varphi ) : \det \nolimits _\kappa (M) \to \det \nolimits _\kappa (N)

simply by the rule

\det \nolimits _\kappa (\varphi )([e_1, \ldots , e_ l]) = [\varphi (e_1), \ldots , \varphi (e_ l)]

for any symbol [e_1, \ldots , e_ l] for M. Hence we see that \det \nolimits _\kappa is a functor

42.68.5.1
\begin{equation} \label{chow-equation-functor} \left\{ \begin{matrix} \text{finite length }R\text{-modules} \\ \text{with isomorphisms} \end{matrix} \right\} \longrightarrow \left\{ \begin{matrix} 1\text{-dimensional }\kappa \text{-vector spaces} \\ \text{with isomorphisms} \end{matrix} \right\} \end{equation}

This is typical for a “determinant functor” (see [Knudsen]), as is the following additivity property.

Lemma 42.68.6. Let (R, \mathfrak m, \kappa ) be a local ring. For every short exact sequence

0 \to K \to L \to M \to 0

of finite length R-modules there exists a canonical isomorphism

\gamma _{K \to L \to M} : \det \nolimits _\kappa (K) \otimes _\kappa \det \nolimits _\kappa (M) \longrightarrow \det \nolimits _\kappa (L)

defined by the rule on nonzero symbols

[e_1, \ldots , e_ k] \otimes [\overline{f}_1, \ldots , \overline{f}_ m] \longrightarrow [e_1, \ldots , e_ k, f_1, \ldots , f_ m]

with the following properties:

  1. For every isomorphism of short exact sequences, i.e., for every commutative diagram

    \xymatrix{ 0 \ar[r] & K \ar[r] \ar[d]^ u & L \ar[r] \ar[d]^ v & M \ar[r] \ar[d]^ w & 0 \\ 0 \ar[r] & K' \ar[r] & L' \ar[r] & M' \ar[r] & 0 }

    with short exact rows and isomorphisms u, v, w we have

    \gamma _{K' \to L' \to M'} \circ (\det \nolimits _\kappa (u) \otimes \det \nolimits _\kappa (w)) = \det \nolimits _\kappa (v) \circ \gamma _{K \to L \to M},
  2. for every commutative square of finite length R-modules with exact rows and columns

    \xymatrix{ & 0 \ar[d] & 0 \ar[d] & 0 \ar[d] & \\ 0 \ar[r] & A \ar[r] \ar[d] & B \ar[r] \ar[d] & C \ar[r] \ar[d] & 0 \\ 0 \ar[r] & D \ar[r] \ar[d] & E \ar[r] \ar[d] & F \ar[r] \ar[d] & 0 \\ 0 \ar[r] & G \ar[r] \ar[d] & H \ar[r] \ar[d] & I \ar[r] \ar[d] & 0 \\ & 0 & 0 & 0 & }

    the following diagram is commutative

    \xymatrix{ \det \nolimits _\kappa (A) \otimes \det \nolimits _\kappa (C) \otimes \det \nolimits _\kappa (G) \otimes \det \nolimits _\kappa (I) \ar[dd]_{\epsilon } \ar[rrr]_-{\gamma _{A \to B \to C} \otimes \gamma _{G \to H \to I}} & & & \det \nolimits _\kappa (B) \otimes \det \nolimits _\kappa (H) \ar[d]^{\gamma _{B \to E \to H}} \\ & & & \det \nolimits _\kappa (E) \\ \det \nolimits _\kappa (A) \otimes \det \nolimits _\kappa (G) \otimes \det \nolimits _\kappa (C) \otimes \det \nolimits _\kappa (I) \ar[rrr]^-{\gamma _{A \to D \to G} \otimes \gamma _{C \to F \to I}} & & & \det \nolimits _\kappa (D) \otimes \det \nolimits _\kappa (F) \ar[u]_{\gamma _{D \to E \to F}} }

    where \epsilon is the switch of the factors in the tensor product times (-1)^{cg} with c = \text{length}_ R(C) and g = \text{length}_ R(G), and

  3. the map \gamma _{K \to L \to M} agrees with the usual isomorphism if 0 \to K \to L \to M \to 0 is actually a short exact sequence of \kappa -vector spaces.

Proof. The significance of taking nonzero symbols in the explicit description of the map \gamma _{K \to L \to M} is simply that if (e_1, \ldots , e_ l) is an admissible sequence in K, and (\overline{f}_1, \ldots , \overline{f}_ m) is an admissible sequence in M, then it is not guaranteed that (e_1, \ldots , e_ l, f_1, \ldots , f_ m) is an admissible sequence in L (where of course f_ i \in L signifies a lift of \overline{f}_ i). However, if the symbol [e_1, \ldots , e_ l] is nonzero in \det _\kappa (K), then necessarily K = \langle e_1, \ldots , e_ k\rangle (see proof of Lemma 42.68.3), and in this case it is true that (e_1, \ldots , e_ k, f_1, \ldots , f_ m) is an admissible sequence. Moreover, by the admissible relations of type (b) for \det _\kappa (L) we see that the value of [e_1, \ldots , e_ k, f_1, \ldots , f_ m] in \det _\kappa (L) is independent of the choice of the lifts f_ i in this case also. Given this remark, it is clear that an admissible relation for e_1, \ldots , e_ k in K translates into an admissible relation among e_1, \ldots , e_ k, f_1, \ldots , f_ m in L, and similarly for an admissible relation among the \overline{f}_1, \ldots , \overline{f}_ m. Thus \gamma defines a linear map of vector spaces as claimed in the lemma.

By Lemma 42.68.5 we know \det _\kappa (L) is generated by any single symbol [x_1, \ldots , x_{k + m}] such that (x_1, \ldots , x_{k + m}) is an admissible sequence with L = \langle x_1, \ldots , x_{k + m}\rangle . Hence it is clear that the map \gamma _{K \to L \to M} is surjective and hence an isomorphism.

Property (1) holds because

\begin{eqnarray*} & & \det \nolimits _\kappa (v)([e_1, \ldots , e_ k, f_1, \ldots , f_ m]) \\ & = & [v(e_1), \ldots , v(e_ k), v(f_1), \ldots , v(f_ m)] \\ & = & \gamma _{K' \to L' \to M'}([u(e_1), \ldots , u(e_ k)] \otimes [w(f_1), \ldots , w(f_ m)]). \end{eqnarray*}

Property (2) means that given a symbol [\alpha _1, \ldots , \alpha _ a] generating \det _\kappa (A), a symbol [\gamma _1, \ldots , \gamma _ c] generating \det _\kappa (C), a symbol [\zeta _1, \ldots , \zeta _ g] generating \det _\kappa (G), and a symbol [\iota _1, \ldots , \iota _ i] generating \det _\kappa (I) we have

\begin{eqnarray*} & & [\alpha _1, \ldots , \alpha _ a, \tilde\gamma _1, \ldots , \tilde\gamma _ c, \tilde\zeta _1, \ldots , \tilde\zeta _ g, \tilde\iota _1, \ldots , \tilde\iota _ i] \\ & = & (-1)^{cg} [\alpha _1, \ldots , \alpha _ a, \tilde\zeta _1, \ldots , \tilde\zeta _ g, \tilde\gamma _1, \ldots , \tilde\gamma _ c, \tilde\iota _1, \ldots , \tilde\iota _ i] \end{eqnarray*}

(for suitable lifts \tilde{x} in E) in \det _\kappa (E). This holds because we may use the admissible relations of type (c) cg times in the following order: move the \tilde\zeta _1 past the elements \tilde\gamma _ c, \ldots , \tilde\gamma _1 (allowed since \mathfrak m\tilde\zeta _1 \subset A), then move \tilde\zeta _2 past the elements \tilde\gamma _ c, \ldots , \tilde\gamma _1 (allowed since \mathfrak m\tilde\zeta _2 \subset A + R\tilde\zeta _1), and so on.

Part (3) of the lemma is obvious. This finishes the proof. \square

We can use the maps \gamma of the lemma to define more general maps \gamma as follows. Suppose that (R, \mathfrak m, \kappa ) is a local ring. Let M be a finite length R-module and suppose we are given a finite filtration (see Homology, Definition 12.19.1)

0 = F^ m \subset F^{m - 1} \subset \ldots \subset F^{n + 1} \subset F^ n = M

then there is a well defined and canonical isomorphism

\gamma _{(M, F)} : \det \nolimits _\kappa (F^{m - 1}/F^ m) \otimes _\kappa \ldots \otimes _ k \det \nolimits _\kappa (F^ n/F^{n + 1}) \longrightarrow \det \nolimits _\kappa (M)

To construct it we use isomorphisms of Lemma 42.68.6 coming from the short exact sequences 0 \to F^{i - 1}/F^ i \to M/F^ i \to M/F^{i - 1} \to 0. Part (2) of Lemma 42.68.6 with G = 0 shows we obtain the same isomorphism if we use the short exact sequences 0 \to F^ i \to F^{i - 1} \to F^{i - 1}/F^ i \to 0.

Here is another typical result for determinant functors. It is not hard to show. The tricky part is usually to show the existence of a determinant functor.

Lemma 42.68.7. Let (R, \mathfrak m, \kappa ) be any local ring. The functor

\det \nolimits _\kappa : \left\{ \begin{matrix} \text{finite length }R\text{-modules} \\ \text{with isomorphisms} \end{matrix} \right\} \longrightarrow \left\{ \begin{matrix} 1\text{-dimensional }\kappa \text{-vector spaces} \\ \text{with isomorphisms} \end{matrix} \right\}

endowed with the maps \gamma _{K \to L \to M} is characterized by the following properties

  1. its restriction to the subcategory of modules annihilated by \mathfrak m is isomorphic to the usual determinant functor (see Lemma 42.68.4), and

  2. (1), (2) and (3) of Lemma 42.68.6 hold.

Proof. Omitted. \square

Lemma 42.68.8. Let (R', \mathfrak m') \to (R, \mathfrak m) be a local ring homomorphism which induces an isomorphism on residue fields \kappa . Then for every finite length R-module the restriction M_{R'} is a finite length R'-module and there is a canonical isomorphism

\det \nolimits _{R, \kappa }(M) \longrightarrow \det \nolimits _{R', \kappa }(M_{R'})

This isomorphism is functorial in M and compatible with the isomorphisms \gamma _{K \to L \to M} of Lemma 42.68.6 defined for \det _{R, \kappa } and \det _{R', \kappa }.

Proof. If the length of M as an R-module is l, then the length of M as an R'-module (i.e., M_{R'}) is l as well, see Algebra, Lemma 10.52.12. Note that an admissible sequence x_1, \ldots , x_ l of M over R is an admissible sequence of M over R' as \mathfrak m' maps into \mathfrak m. The isomorphism is obtained by mapping the symbol [x_1, \ldots , x_ l] \in \det \nolimits _{R, \kappa }(M) to the corresponding symbol [x_1, \ldots , x_ l] \in \det \nolimits _{R', \kappa }(M). It is immediate to verify that this is functorial for isomorphisms and compatible with the isomorphisms \gamma of Lemma 42.68.6. \square

Remark 42.68.9. Let (R, \mathfrak m, \kappa ) be a local ring and assume either the characteristic of \kappa is zero or it is p and p R = 0. Let M_1, \ldots , M_ n be finite length R-modules. We will show below that there exists an ideal I \subset \mathfrak m annihilating M_ i for i = 1, \ldots , n and a section \sigma : \kappa \to R/I of the canonical surjection R/I \to \kappa . The restriction M_{i, \kappa } of M_ i via \sigma is a \kappa -vector space of dimension l_ i = \text{length}_ R(M_ i) and using Lemma 42.68.8 we see that

\det \nolimits _\kappa (M_ i) = \wedge _\kappa ^{l_ i}(M_{i, \kappa })

These isomorphisms are compatible with the isomorphisms \gamma _{K \to M \to L} of Lemma 42.68.6 for short exact sequences of finite length R-modules annihilated by I. The conclusion is that verifying a property of \det _\kappa often reduces to verifying corresponding properties of the usual determinant on the category finite dimensional vector spaces.

For I we can take the annihilator (Algebra, Definition 10.40.3) of the module M = \bigoplus M_ i. In this case we see that R/I \subset \text{End}_ R(M) hence has finite length. Thus R/I is an Artinian local ring with residue field \kappa . Since an Artinian local ring is complete we see that R/I has a coefficient ring by the Cohen structure theorem (Algebra, Theorem 10.160.8) which is a field by our assumption on R.

Here is a case where we can compute the determinant of a linear map. In fact there is nothing mysterious about this in any case, see Example 42.68.11 for a random example.

Lemma 42.68.10. Let R be a local ring with residue field \kappa . Let u \in R^* be a unit. Let M be a module of finite length over R. Denote u_ M : M \to M the map multiplication by u. Then

\det \nolimits _\kappa (u_ M) : \det \nolimits _\kappa (M) \longrightarrow \det \nolimits _\kappa (M)

is multiplication by \overline{u}^ l where l = \text{length}_ R(M) and \overline{u} \in \kappa ^* is the image of u.

Proof. Denote f_ M \in \kappa ^* the element such that \det \nolimits _\kappa (u_ M) = f_ M \text{id}_{\det \nolimits _\kappa (M)}. Suppose that 0 \to K \to L \to M \to 0 is a short exact sequence of finite R-modules. Then we see that u_ k, u_ L, u_ M give an isomorphism of short exact sequences. Hence by Lemma 42.68.6 (1) we conclude that f_ K f_ M = f_ L. This means that by induction on length it suffices to prove the lemma in the case of length 1 where it is trivial. \square

Example 42.68.11. Consider the local ring R = \mathbf{Z}_ p. Set M = \mathbf{Z}_ p/(p^2) \oplus \mathbf{Z}_ p/(p^3). Let u : M \to M be the map given by the matrix

u = \left( \begin{matrix} a & b \\ pc & d \end{matrix} \right)

where a, b, c, d \in \mathbf{Z}_ p, and a, d \in \mathbf{Z}_ p^*. In this case \det _\kappa (u) equals multiplication by a^2d^3 \bmod p \in \mathbf{F}_ p^*. This can easily be seen by consider the effect of u on the symbol [p^2e, pe, pf, e, f] where e = (0 , 1) \in M and f = (1, 0) \in M.

42.68.12 Periodic complexes and determinants

Let R be a local ring with residue field \kappa . Let (M, \varphi , \psi ) be a (2, 1)-periodic complex over R. Assume that M has finite length and that (M, \varphi , \psi ) is exact. We are going to use the determinant construction to define an invariant of this situation. See Subsection 42.68.1. Let us abbreviate K_\varphi = \mathop{\mathrm{Ker}}(\varphi ), I_\varphi = \mathop{\mathrm{Im}}(\varphi ), K_\psi = \mathop{\mathrm{Ker}}(\psi ), and I_\psi = \mathop{\mathrm{Im}}(\psi ). The short exact sequences

0 \to K_\varphi \to M \to I_\varphi \to 0, \quad 0 \to K_\psi \to M \to I_\psi \to 0

give isomorphisms

\gamma _\varphi : \det \nolimits _\kappa (K_\varphi ) \otimes \det \nolimits _\kappa (I_\varphi ) \longrightarrow \det \nolimits _\kappa (M), \quad \gamma _\psi : \det \nolimits _\kappa (K_\psi ) \otimes \det \nolimits _\kappa (I_\psi ) \longrightarrow \det \nolimits _\kappa (M),

see Lemma 42.68.6. On the other hand the exactness of the complex gives equalities K_\varphi = I_\psi , and K_\psi = I_\varphi and hence an isomorphism

\sigma : \det \nolimits _\kappa (K_\varphi ) \otimes \det \nolimits _\kappa (I_\varphi ) \longrightarrow \det \nolimits _\kappa (K_\psi ) \otimes \det \nolimits _\kappa (I_\psi )

by switching the factors. Using this notation we can define our invariant.

Definition 42.68.13. Let R be a local ring with residue field \kappa . Let (M, \varphi , \psi ) be a (2, 1)-periodic complex over R. Assume that M has finite length and that (M, \varphi , \psi ) is exact. The determinant of (M, \varphi , \psi ) is the element

\det \nolimits _\kappa (M, \varphi , \psi ) \in \kappa ^*

such that the composition

\det \nolimits _\kappa (M) \xrightarrow {\gamma _\psi \circ \sigma \circ \gamma _\varphi ^{-1}} \det \nolimits _\kappa (M)

is multiplication by (-1)^{\text{length}_ R(I_\varphi )\text{length}_ R(I_\psi )} \det \nolimits _\kappa (M, \varphi , \psi ).

Remark 42.68.14. Here is a more down to earth description of the determinant introduced above. Let R be a local ring with residue field \kappa . Let (M, \varphi , \psi ) be a (2, 1)-periodic complex over R. Assume that M has finite length and that (M, \varphi , \psi ) is exact. Let us abbreviate I_\varphi = \mathop{\mathrm{Im}}(\varphi ), I_\psi = \mathop{\mathrm{Im}}(\psi ) as above. Assume that \text{length}_ R(I_\varphi ) = a and \text{length}_ R(I_\psi ) = b, so that a + b = \text{length}_ R(M) by exactness. Choose admissible sequences x_1, \ldots , x_ a \in I_\varphi and y_1, \ldots , y_ b \in I_\psi such that the symbol [x_1, \ldots , x_ a] generates \det _\kappa (I_\varphi ) and the symbol [x_1, \ldots , x_ b] generates \det _\kappa (I_\psi ). Choose \tilde x_ i \in M such that \varphi (\tilde x_ i) = x_ i. Choose \tilde y_ j \in M such that \psi (\tilde y_ j) = y_ j. Then \det _\kappa (M, \varphi , \psi ) is characterized by the equality

[x_1, \ldots , x_ a, \tilde y_1, \ldots , \tilde y_ b] = (-1)^{ab} \det \nolimits _\kappa (M, \varphi , \psi ) [y_1, \ldots , y_ b, \tilde x_1, \ldots , \tilde x_ a]

in \det _\kappa (M). This also explains the sign.

Lemma 42.68.15. Let R be a local ring with residue field \kappa . Let (M, \varphi , \psi ) be a (2, 1)-periodic complex over R. Assume that M has finite length and that (M, \varphi , \psi ) is exact. Then

\det \nolimits _\kappa (M, \varphi , \psi ) \det \nolimits _\kappa (M, \psi , \varphi ) = 1.

Proof. Omitted. \square

Lemma 42.68.16. Let R be a local ring with residue field \kappa . Let (M, \varphi , \varphi ) be a (2, 1)-periodic complex over R. Assume that M has finite length and that (M, \varphi , \varphi ) is exact. Then \text{length}_ R(M) = 2 \text{length}_ R(\mathop{\mathrm{Im}}(\varphi )) and

\det \nolimits _\kappa (M, \varphi , \varphi ) = (-1)^{\text{length}_ R(\mathop{\mathrm{Im}}(\varphi ))} = (-1)^{\frac{1}{2}\text{length}_ R(M)}

Proof. Follows directly from the sign rule in the definitions. \square

Lemma 42.68.17. Let R be a local ring with residue field \kappa . Let M be a finite length R-module.

  1. if \varphi : M \to M is an isomorphism then \det _\kappa (M, \varphi , 0) = \det _\kappa (\varphi ).

  2. if \psi : M \to M is an isomorphism then \det _\kappa (M, 0, \psi ) = \det _\kappa (\psi )^{-1}.

Proof. Let us prove (1). Set \psi = 0. Then we may, with notation as above Definition 42.68.13, identify K_\varphi = I_\psi = 0, I_\varphi = K_\psi = M. With these identifications, the map

\gamma _\varphi : \kappa \otimes \det \nolimits _\kappa (M) = \det \nolimits _\kappa (K_\varphi ) \otimes \det \nolimits _\kappa (I_\varphi ) \longrightarrow \det \nolimits _\kappa (M)

is identified with \det _\kappa (\varphi ^{-1}). On the other hand the map \gamma _\psi is identified with the identity map. Hence \gamma _\psi \circ \sigma \circ \gamma _\varphi ^{-1} is equal to \det _\kappa (\varphi ) in this case. Whence the result. We omit the proof of (2). \square

Lemma 42.68.18. Let R be a local ring with residue field \kappa . Suppose that we have a short exact sequence of (2, 1)-periodic complexes

0 \to (M_1, \varphi _1, \psi _1) \to (M_2, \varphi _2, \psi _2) \to (M_3, \varphi _3, \psi _3) \to 0

with all M_ i of finite length, and each (M_1, \varphi _1, \psi _1) exact. Then

\det \nolimits _\kappa (M_2, \varphi _2, \psi _2) = \det \nolimits _\kappa (M_1, \varphi _1, \psi _1) \det \nolimits _\kappa (M_3, \varphi _3, \psi _3).

in \kappa ^*.

Proof. Let us abbreviate I_{\varphi , i} = \mathop{\mathrm{Im}}(\varphi _ i), K_{\varphi , i} = \mathop{\mathrm{Ker}}(\varphi _ i), I_{\psi , i} = \mathop{\mathrm{Im}}(\psi _ i), and K_{\psi , i} = \mathop{\mathrm{Ker}}(\psi _ i). Observe that we have a commutative square

\xymatrix{ & 0 \ar[d] & 0 \ar[d] & 0 \ar[d] & \\ 0 \ar[r] & K_{\varphi , 1} \ar[r] \ar[d] & K_{\varphi , 2} \ar[r] \ar[d] & K_{\varphi , 3} \ar[r] \ar[d] & 0 \\ 0 \ar[r] & M_1 \ar[r] \ar[d] & M_2 \ar[r] \ar[d] & M_3 \ar[r] \ar[d] & 0 \\ 0 \ar[r] & I_{\varphi , 1} \ar[r] \ar[d] & I_{\varphi , 2} \ar[r] \ar[d] & I_{\varphi , 3} \ar[r] \ar[d] & 0 \\ & 0 & 0 & 0 & }

of finite length R-modules with exact rows and columns. The top row is exact since it can be identified with the sequence I_{\psi , 1} \to I_{\psi , 2} \to I_{\psi , 3} \to 0 of images, and similarly for the bottom row. There is a similar diagram involving the modules I_{\psi , i} and K_{\psi , i}. By definition \det _\kappa (M_2, \varphi _2, \psi _2) corresponds, up to a sign, to the composition of the left vertical maps in the following diagram

\xymatrix{ \det _\kappa (M_1) \otimes \det _\kappa (M_3) \ar[r]^\gamma \ar[d]^{\gamma ^{-1} \otimes \gamma ^{-1}} & \det _\kappa (M_2) \ar[d]^{\gamma ^{-1}} \\ \det \nolimits _\kappa (K_{\varphi , 1}) \otimes \det \nolimits _\kappa (I_{\varphi , 1}) \otimes \det \nolimits _\kappa (K_{\varphi , 3}) \otimes \det \nolimits _\kappa (I_{\varphi , 3}) \ar[d]^{\sigma \otimes \sigma } \ar[r]^-{\gamma \otimes \gamma } & \det \nolimits _\kappa (K_{\varphi , 2}) \otimes \det \nolimits _\kappa (I_{\varphi , 2}) \ar[d]^\sigma \\ \det \nolimits _\kappa (K_{\psi , 1}) \otimes \det \nolimits _\kappa (I_{\psi , 1}) \otimes \det \nolimits _\kappa (K_{\psi , 3}) \otimes \det \nolimits _\kappa (I_{\psi , 3}) \ar[d]^{\gamma \otimes \gamma } \ar[r]^-{\gamma \otimes \gamma } & \det \nolimits _\kappa (K_{\psi , 2}) \otimes \det \nolimits _\kappa (I_{\psi , 2}) \ar[d]^\gamma \\ \det _\kappa (M_1) \otimes \det _\kappa (M_3) \ar[r]^\gamma & \det _\kappa (M_2) }

The top and bottom squares are commutative up to sign by applying Lemma 42.68.6 (2). The middle square is trivially commutative (we are just switching factors). Hence we see that \det \nolimits _\kappa (M_2, \varphi _2, \psi _2) = \epsilon \det \nolimits _\kappa (M_1, \varphi _1, \psi _1) \det \nolimits _\kappa (M_3, \varphi _3, \psi _3) for some sign \epsilon . And the sign can be worked out, namely the outer rectangle in the diagram above commutes up to

\begin{eqnarray*} \epsilon & = & (-1)^{\text{length}(I_{\varphi , 1})\text{length}(K_{\varphi , 3}) + \text{length}(I_{\psi , 1})\text{length}(K_{\psi , 3})} \\ & = & (-1)^{\text{length}(I_{\varphi , 1})\text{length}(I_{\psi , 3}) + \text{length}(I_{\psi , 1})\text{length}(I_{\varphi , 3})} \end{eqnarray*}

(proof omitted). It follows easily from this that the signs work out as well. \square

Example 42.68.19. Let k be a field. Consider the ring R = k[T]/(T^2) of dual numbers over k. Denote t the class of T in R. Let M = R and \varphi = ut, \psi = vt with u, v \in k^*. In this case \det _ k(M) has generator e = [t, 1]. We identify I_\varphi = K_\varphi = I_\psi = K_\psi = (t). Then \gamma _\varphi (t \otimes t) = u^{-1}[t, 1] (since u^{-1} \in M is a lift of t \in I_\varphi ) and \gamma _\psi (t \otimes t) = v^{-1}[t, 1] (same reason). Hence we see that \det _ k(M, \varphi , \psi ) = -u/v \in k^*.

Example 42.68.20. Let R = \mathbf{Z}_ p and let M = \mathbf{Z}_ p/(p^ l). Let \varphi = p^ b u and \varphi = p^ a v with a, b \geq 0, a + b = l and u, v \in \mathbf{Z}_ p^*. Then a computation as in Example 42.68.19 shows that

\begin{eqnarray*} \det \nolimits _{\mathbf{F}_ p}(\mathbf{Z}_ p/(p^ l), p^ bu, p^ av) & = & (-1)^{ab}u^ a/v^ b \bmod p \\ & = & (-1)^{\text{ord}_ p(\alpha )\text{ord}_ p(\beta )} \frac{\alpha ^{\text{ord}_ p(\beta )}}{\beta ^{\text{ord}_ p(\alpha )}} \bmod p \end{eqnarray*}

with \alpha = p^ bu, \beta = p^ av \in \mathbf{Z}_ p. See Lemma 42.68.37 for a more general case (and a proof).

Example 42.68.21. Let R = k be a field. Let M = k^{\oplus a} \oplus k^{\oplus b} be l = a + b dimensional. Let \varphi and \psi be the following diagonal matrices

\varphi = \text{diag}(u_1, \ldots , u_ a, 0, \ldots , 0), \quad \psi = \text{diag}(0, \ldots , 0, v_1, \ldots , v_ b)

with u_ i, v_ j \in k^*. In this case we have

\det \nolimits _ k(M, \varphi , \psi ) = \frac{u_1 \ldots u_ a}{v_1 \ldots v_ b}.

This can be seen by a direct computation or by computing in case l = 1 and using the additivity of Lemma 42.68.18.

Example 42.68.22. Let R = k be a field. Let M = k^{\oplus a} \oplus k^{\oplus a} be l = 2a dimensional. Let \varphi and \psi be the following block matrices

\varphi = \left( \begin{matrix} 0 & U \\ 0 & 0 \end{matrix} \right), \quad \psi = \left( \begin{matrix} 0 & V \\ 0 & 0 \end{matrix} \right),

with U, V \in \text{Mat}(a \times a, k) invertible. In this case we have

\det \nolimits _ k(M, \varphi , \psi ) = (-1)^ a\frac{\det (U)}{\det (V)}.

This can be seen by a direct computation. The case a = 1 is similar to the computation in Example 42.68.19.

Example 42.68.23. Let R = k be a field. Let M = k^{\oplus 4}. Let

\varphi = \left( \begin{matrix} 0 & 0 & 0 & 0 \\ u_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & u_2 & 0 \end{matrix} \right) \quad \varphi = \left( \begin{matrix} 0 & 0 & 0 & 0 \\ 0 & 0 & v_2 & 0 \\ 0 & 0 & 0 & 0 \\ v_1 & 0 & 0 & 0 \end{matrix} \right) \quad

with u_1, u_2, v_1, v_2 \in k^*. Then we have

\det \nolimits _ k(M, \varphi , \psi ) = -\frac{u_1u_2}{v_1v_2}.

Next we come to the analogue of the fact that the determinant of a composition of linear endomorphisms is the product of the determinants. To avoid very long formulae we write I_\varphi = \mathop{\mathrm{Im}}(\varphi ), and K_\varphi = \mathop{\mathrm{Ker}}(\varphi ) for any R-module map \varphi : M \to M. We also denote \varphi \psi = \varphi \circ \psi for a pair of morphisms \varphi , \psi : M \to M.

Lemma 42.68.24. Let R be a local ring with residue field \kappa . Let M be a finite length R-module. Let \alpha , \beta , \gamma be endomorphisms of M. Assume that

  1. I_\alpha = K_{\beta \gamma }, and similarly for any permutation of \alpha , \beta , \gamma ,

  2. K_\alpha = I_{\beta \gamma }, and similarly for any permutation of \alpha , \beta , \gamma .

Then

  1. The triple (M, \alpha , \beta \gamma ) is an exact (2, 1)-periodic complex.

  2. The triple (I_\gamma , \alpha , \beta ) is an exact (2, 1)-periodic complex.

  3. The triple (M/K_\beta , \alpha , \gamma ) is an exact (2, 1)-periodic complex.

  4. We have

    \det \nolimits _\kappa (M, \alpha , \beta \gamma ) = \det \nolimits _\kappa (I_\gamma , \alpha , \beta ) \det \nolimits _\kappa (M/K_\beta , \alpha , \gamma ).

Proof. It is clear that the assumptions imply part (1) of the lemma.

To see part (1) note that the assumptions imply that I_{\gamma \alpha } = I_{\alpha \gamma }, and similarly for kernels and any other pair of morphisms. Moreover, we see that I_{\gamma \beta } =I_{\beta \gamma } = K_\alpha \subset I_\gamma and similarly for any other pair. In particular we get a short exact sequence

0 \to I_{\beta \gamma } \to I_\gamma \xrightarrow {\alpha } I_{\alpha \gamma } \to 0

and similarly we get a short exact sequence

0 \to I_{\alpha \gamma } \to I_\gamma \xrightarrow {\beta } I_{\beta \gamma } \to 0.

This proves (I_\gamma , \alpha , \beta ) is an exact (2, 1)-periodic complex. Hence part (2) of the lemma holds.

To see that \alpha , \gamma give well defined endomorphisms of M/K_\beta we have to check that \alpha (K_\beta ) \subset K_\beta and \gamma (K_\beta ) \subset K_\beta . This is true because \alpha (K_\beta ) = \alpha (I_{\gamma \alpha }) = I_{\alpha \gamma \alpha } \subset I_{\alpha \gamma } = K_\beta , and similarly in the other case. The kernel of the map \alpha : M/K_\beta \to M/K_\beta is K_{\beta \alpha }/K_\beta = I_\gamma /K_\beta . Similarly, the kernel of \gamma : M/K_\beta \to M/K_\beta is equal to I_\alpha /K_\beta . Hence we conclude that (3) holds.

We introduce r = \text{length}_ R(K_\alpha ), s = \text{length}_ R(K_\beta ) and t = \text{length}_ R(K_\gamma ). By the exact sequences above and our hypotheses we have \text{length}_ R(I_\alpha ) = s + t, \text{length}_ R(I_\beta ) = r + t, \text{length}_ R(I_\gamma ) = r + s, and \text{length}(M) = r + s + t. Choose

  1. an admissible sequence x_1, \ldots , x_ r \in K_\alpha generating K_\alpha

  2. an admissible sequence y_1, \ldots , y_ s \in K_\beta generating K_\beta ,

  3. an admissible sequence z_1, \ldots , z_ t \in K_\gamma generating K_\gamma ,

  4. elements \tilde x_ i \in M such that \beta \gamma \tilde x_ i = x_ i,

  5. elements \tilde y_ i \in M such that \alpha \gamma \tilde y_ i = y_ i,

  6. elements \tilde z_ i \in M such that \beta \alpha \tilde z_ i = z_ i.

With these choices the sequence y_1, \ldots , y_ s, \alpha \tilde z_1, \ldots , \alpha \tilde z_ t is an admissible sequence in I_\alpha generating it. Hence, by Remark 42.68.14 the determinant D = \det _\kappa (M, \alpha , \beta \gamma ) is the unique element of \kappa ^* such that

\begin{align*} [y_1, \ldots , y_ s, \alpha \tilde z_1, \ldots , \alpha \tilde z_ s, \tilde x_1, \ldots , \tilde x_ r] \\ = (-1)^{r(s + t)} D [x_1, \ldots , x_ r, \gamma \tilde y_1, \ldots , \gamma \tilde y_ s, \tilde z_1, \ldots , \tilde z_ t] \end{align*}

By the same remark, we see that D_1 = \det _\kappa (M/K_\beta , \alpha , \gamma ) is characterized by

[y_1, \ldots , y_ s, \alpha \tilde z_1, \ldots , \alpha \tilde z_ t, \tilde x_1, \ldots , \tilde x_ r] = (-1)^{rt} D_1 [y_1, \ldots , y_ s, \gamma \tilde x_1, \ldots , \gamma \tilde x_ r, \tilde z_1, \ldots , \tilde z_ t]

By the same remark, we see that D_2 = \det _\kappa (I_\gamma , \alpha , \beta ) is characterized by

[y_1, \ldots , y_ s, \gamma \tilde x_1, \ldots , \gamma \tilde x_ r, \tilde z_1, \ldots , \tilde z_ t] = (-1)^{rs} D_2 [x_1, \ldots , x_ r, \gamma \tilde y_1, \ldots , \gamma \tilde y_ s, \tilde z_1, \ldots , \tilde z_ t]

Combining the formulas above we see that D = D_1 D_2 as desired. \square

Lemma 42.68.25. Let R be a local ring with residue field \kappa . Let \alpha : (M, \varphi , \psi ) \to (M', \varphi ', \psi ') be a morphism of (2, 1)-periodic complexes over R. Assume

  1. M, M' have finite length,

  2. (M, \varphi , \psi ), (M', \varphi ', \psi ') are exact,

  3. the maps \varphi , \psi induce the zero map on K = \mathop{\mathrm{Ker}}(\alpha ), and

  4. the maps \varphi , \psi induce the zero map on Q = \mathop{\mathrm{Coker}}(\alpha ).

Denote N = \alpha (M) \subset M'. We obtain two short exact sequences of (2, 1)-periodic complexes

\begin{matrix} 0 \to (N, \varphi ', \psi ') \to (M', \varphi ', \psi ') \to (Q, 0, 0) \to 0 \\ 0 \to (K, 0, 0) \to (M, \varphi , \psi ) \to (N, \varphi ', \psi ') \to 0 \end{matrix}

which induce two isomorphisms \alpha _ i : Q \to K, i = 0, 1. Then

\det \nolimits _\kappa (M, \varphi , \psi ) = \det \nolimits _\kappa (\alpha _0^{-1} \circ \alpha _1) \det \nolimits _\kappa (M', \varphi ', \psi ')

In particular, if \alpha _0 = \alpha _1, then \det \nolimits _\kappa (M, \varphi , \psi ) = \det \nolimits _\kappa (M', \varphi ', \psi ').

Proof. There are (at least) two ways to prove this lemma. One is to produce an enormous commutative diagram using the properties of the determinants. The other is to use the characterization of the determinants in terms of admissible sequences of elements. It is the second approach that we will use.

First let us explain precisely what the maps \alpha _ i are. Namely, \alpha _0 is the composition

\alpha _0 : Q = H^0(Q, 0, 0) \to H^1(N, \varphi ', \psi ') \to H^2(K, 0, 0) = K

and \alpha _1 is the composition

\alpha _1 : Q = H^1(Q, 0, 0) \to H^2(N, \varphi ', \psi ') \to H^3(K, 0, 0) = K

coming from the boundary maps of the short exact sequences of complexes displayed in the lemma. The fact that the complexes (M, \varphi , \psi ), (M', \varphi ', \psi ') are exact implies these maps are isomorphisms.

We will use the notation I_\varphi = \mathop{\mathrm{Im}}(\varphi ), K_\varphi = \mathop{\mathrm{Ker}}(\varphi ) and similarly for the other maps. Exactness for M and M' means that K_\varphi = I_\psi and three similar equalities. We introduce k = \text{length}_ R(K), a = \text{length}_ R(I_\varphi ), b = \text{length}_ R(I_\psi ). Then we see that \text{length}_ R(M) = a + b, and \text{length}_ R(N) = a + b - k, \text{length}_ R(Q) = k and \text{length}_ R(M') = a + b. The exact sequences below will show that also \text{length}_ R(I_{\varphi '}) = a and \text{length}_ R(I_{\psi '}) = b.

The assumption that K \subset K_\varphi = I_\psi means that \varphi factors through N to give an exact sequence

0 \to \alpha (I_\psi ) \to N \xrightarrow {\varphi \alpha ^{-1}} I_\psi \to 0.

Here \varphi \alpha ^{-1}(x') = y means x' = \alpha (x) and y = \varphi (x). Similarly, we have

0 \to \alpha (I_\varphi ) \to N \xrightarrow {\psi \alpha ^{-1}} I_\varphi \to 0.

The assumption that \psi ' induces the zero map on Q means that I_{\psi '} = K_{\varphi '} \subset N. This means the quotient \varphi '(N) \subset I_{\varphi '} is identified with Q. Note that \varphi '(N) = \alpha (I_\varphi ). Hence we conclude there is an isomorphism

\varphi ' : Q \to I_{\varphi '}/\alpha (I_\varphi )

simply described by \varphi '(x' \bmod N) = \varphi '(x') \bmod \alpha (I_\varphi ). In exactly the same way we get

\psi ' : Q \to I_{\psi '}/\alpha (I_\psi )

Finally, note that \alpha _0 is the composition

\xymatrix{ Q \ar[r]^-{\varphi '} & I_{\varphi '}/\alpha (I_\varphi ) \ar[rrr]^-{\psi \alpha ^{-1}|_{I_{\varphi '}/\alpha (I_\varphi )}} & & & K }

and similarly \alpha _1 = \varphi \alpha ^{-1}|_{I_{\psi '}/\alpha (I_\psi )} \circ \psi '.

To shorten the formulas below we are going to write \alpha x instead of \alpha (x) in the following. No confusion should result since all maps are indicated by Greek letters and elements by Roman letters. We are going to choose

  1. an admissible sequence z_1, \ldots , z_ k \in K generating K,

  2. elements z'_ i \in M such that \varphi z'_ i = z_ i,

  3. elements z''_ i \in M such that \psi z''_ i = z_ i,

  4. elements x_{k + 1}, \ldots , x_ a \in I_\varphi such that z_1, \ldots , z_ k, x_{k + 1}, \ldots , x_ a is an admissible sequence generating I_\varphi ,

  5. elements \tilde x_ i \in M such that \varphi \tilde x_ i = x_ i,

  6. elements y_{k + 1}, \ldots , y_ b \in I_\psi such that z_1, \ldots , z_ k, y_{k + 1}, \ldots , y_ b is an admissible sequence generating I_\psi ,

  7. elements \tilde y_ i \in M such that \psi \tilde y_ i = y_ i, and

  8. elements w_1, \ldots , w_ k \in M' such that w_1 \bmod N, \ldots , w_ k \bmod N are an admissible sequence in Q generating Q.

By Remark 42.68.14 the element D = \det _\kappa (M, \varphi , \psi ) \in \kappa ^* is characterized by

\begin{eqnarray*} & & [z_1, \ldots , z_ k, x_{k + 1}, \ldots , x_ a, z''_1, \ldots , z''_ k, \tilde y_{k + 1}, \ldots , \tilde y_ b] \\ & = & (-1)^{ab} D [z_1, \ldots , z_ k, y_{k + 1}, \ldots , y_ b, z'_1, \ldots , z'_ k, \tilde x_{k + 1}, \ldots , \tilde x_ a] \end{eqnarray*}

Note that by the discussion above \alpha x_{k + 1}, \ldots , \alpha x_ a, \varphi w_1, \ldots , \varphi w_ k is an admissible sequence generating I_{\varphi '} and \alpha y_{k + 1}, \ldots , \alpha y_ b, \psi w_1, \ldots , \psi w_ k is an admissible sequence generating I_{\psi '}. Hence by Remark 42.68.14 the element D' = \det _\kappa (M', \varphi ', \psi ') \in \kappa ^* is characterized by

\begin{eqnarray*} & & [\alpha x_{k + 1}, \ldots , \alpha x_ a, \varphi ' w_1, \ldots , \varphi ' w_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b, w_1, \ldots , w_ k] \\ & = & (-1)^{ab} D' [\alpha y_{k + 1}, \ldots , \alpha y_ b, \psi ' w_1, \ldots , \psi ' w_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a, w_1, \ldots , w_ k] \end{eqnarray*}

Note how in the first, resp. second displayed formula the first, resp. last k entries of the symbols on both sides are the same. Hence these formulas are really equivalent to the equalities

\begin{eqnarray*} & & [\alpha x_{k + 1}, \ldots , \alpha x_ a, \alpha z''_1, \ldots , \alpha z''_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b] \\ & = & (-1)^{ab} D [\alpha y_{k + 1}, \ldots , \alpha y_ b, \alpha z'_1, \ldots , \alpha z'_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a] \end{eqnarray*}

and

\begin{eqnarray*} & & [\alpha x_{k + 1}, \ldots , \alpha x_ a, \varphi ' w_1, \ldots , \varphi ' w_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b] \\ & = & (-1)^{ab} D' [\alpha y_{k + 1}, \ldots , \alpha y_ b, \psi ' w_1, \ldots , \psi ' w_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a] \end{eqnarray*}

in \det _\kappa (N). Note that \varphi ' w_1, \ldots , \varphi ' w_ k and \alpha z''_1, \ldots , z''_ k are admissible sequences generating the module I_{\varphi '}/\alpha (I_\varphi ). Write

[\varphi ' w_1, \ldots , \varphi ' w_ k] = \lambda _0 [\alpha z''_1, \ldots , \alpha z''_ k]

in \det _\kappa (I_{\varphi '}/\alpha (I_\varphi )) for some \lambda _0 \in \kappa ^*. Similarly, write

[\psi ' w_1, \ldots , \psi ' w_ k] = \lambda _1 [\alpha z'_1, \ldots , \alpha z'_ k]

in \det _\kappa (I_{\psi '}/\alpha (I_\psi )) for some \lambda _1 \in \kappa ^*. On the one hand it is clear that

\alpha _ i([w_1, \ldots , w_ k]) = \lambda _ i[z_1, \ldots , z_ k]

for i = 0, 1 by our description of \alpha _ i above, which means that

\det \nolimits _\kappa (\alpha _0^{-1} \circ \alpha _1) = \lambda _1/\lambda _0

and on the other hand it is clear that

\begin{eqnarray*} & & \lambda _0 [\alpha x_{k + 1}, \ldots , \alpha x_ a, \alpha z''_1, \ldots , \alpha z''_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b] \\ & = & [\alpha x_{k + 1}, \ldots , \alpha x_ a, \varphi ' w_1, \ldots , \varphi ' w_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b] \end{eqnarray*}

and

\begin{eqnarray*} & & \lambda _1[\alpha y_{k + 1}, \ldots , \alpha y_ b, \alpha z'_1, \ldots , \alpha z'_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a] \\ & = & [\alpha y_{k + 1}, \ldots , \alpha y_ b, \psi ' w_1, \ldots , \psi ' w_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a] \end{eqnarray*}

which imply \lambda _0 D = \lambda _1 D'. The lemma follows. \square

42.68.26 Symbols

The correct generality for this construction is perhaps the situation of the following lemma.

Lemma 42.68.27. Let A be a Noetherian local ring. Let M be a finite A-module of dimension 1. Assume \varphi , \psi : M \to M are two injective A-module maps, and assume \varphi (\psi (M)) = \psi (\varphi (M)), for example if \varphi and \psi commute. Then \text{length}_ R(M/\varphi \psi M) < \infty and (M/\varphi \psi M, \varphi , \psi ) is an exact (2, 1)-periodic complex.

Proof. Let \mathfrak q be a minimal prime of the support of M. Then M_{\mathfrak q} is a finite length A_{\mathfrak q}-module, see Algebra, Lemma 10.62.3. Hence both \varphi and \psi induce isomorphisms M_{\mathfrak q} \to M_{\mathfrak q}. Thus the support of M/\varphi \psi M is \{ \mathfrak m_ A\} and hence it has finite length (see lemma cited above). Finally, the kernel of \varphi on M/\varphi \psi M is clearly \psi M/\varphi \psi M, and hence the kernel of \varphi is the image of \psi on M/\varphi \psi M. Similarly the other way since M/\varphi \psi M = M/\psi \varphi M by assumption. \square

Lemma 42.68.28. Let A be a Noetherian local ring. Let a, b \in A.

  1. If M is a finite A-module of dimension 1 such that a, b are nonzerodivisors on M, then \text{length}_ A(M/abM) < \infty and (M/abM, a, b) is a (2, 1)-periodic exact complex.

  2. If a, b are nonzerodivisors and \dim (A) = 1 then \text{length}_ A(A/(ab)) < \infty and (A/(ab), a, b) is a (2, 1)-periodic exact complex.

In particular, in these cases \det _\kappa (M/abM, a, b) \in \kappa ^*, resp. \det _\kappa (A/(ab), a, b) \in \kappa ^* are defined.

Proof. Follows from Lemma 42.68.27. \square

Definition 42.68.29. Let A be a Noetherian local ring with residue field \kappa . Let a, b \in A. Let M be a finite A-module of dimension 1 such that a, b are nonzerodivisors on M. We define the symbol associated to M, a, b to be the element

d_ M(a, b) = \det \nolimits _\kappa (M/abM, a, b) \in \kappa ^*

Lemma 42.68.30. Let A be a Noetherian local ring. Let a, b, c \in A. Let M be a finite A-module with \dim (\text{Supp}(M)) = 1. Assume a, b, c are nonzerodivisors on M. Then

d_ M(a, bc) = d_ M(a, b) d_ M(a, c)

and d_ M(a, b)d_ M(b, a) = 1.

Proof. The first statement follows from Lemma 42.68.24 applied to M/abcM and endomorphisms \alpha , \beta , \gamma given by multiplication by a, b, c. The second comes from Lemma 42.68.15. \square

Definition 42.68.31. Let A be a Noetherian local domain of dimension 1 with residue field \kappa . Let K be the fraction field of A. We define the tame symbol of A to be the map

K^* \times K^* \longrightarrow \kappa ^*, \quad (x, y) \longmapsto d_ A(x, y)

where d_ A(x, y) is extended to K^* \times K^* by the multiplicativity of Lemma 42.68.30.

It is clear that we may extend more generally d_ M(-, -) to certain rings of fractions of A (even if A is not a domain).

Lemma 42.68.32. Let A be a Noetherian local ring and M a finite A-module of dimension 1. Let a \in A be a nonzerodivisor on M. Then d_ M(a, a) = (-1)^{\text{length}_ A(M/aM)}.

Proof. Immediate from Lemma 42.68.16. \square

Lemma 42.68.33. Let A be a Noetherian local ring. Let M be a finite A-module of dimension 1. Let b \in A be a nonzerodivisor on M, and let u \in A^*. Then

d_ M(u, b) = u^{\text{length}_ A(M/bM)} \bmod \mathfrak m_ A.

In particular, if M = A, then d_ A(u, b) = u^{\text{ord}_ A(b)} \bmod \mathfrak m_ A.

Proof. Note that in this case M/ubM = M/bM on which multiplication by b is zero. Hence d_ M(u, b) = \det _\kappa (u|_{M/bM}) by Lemma 42.68.17. The lemma then follows from Lemma 42.68.10. \square

Lemma 42.68.34. Let A be a Noetherian local ring. Let a, b \in A. Let

0 \to M \to M' \to M'' \to 0

be a short exact sequence of A-modules of dimension 1 such that a, b are nonzerodivisors on all three A-modules. Then

d_{M'}(a, b) = d_ M(a, b) d_{M''}(a, b)

in \kappa ^*.

Proof. It is easy to see that this leads to a short exact sequence of exact (2, 1)-periodic complexes

0 \to (M/abM, a, b) \to (M'/abM', a, b) \to (M''/abM'', a, b) \to 0

Hence the lemma follows from Lemma 42.68.18. \square

Lemma 42.68.35. Let A be a Noetherian local ring. Let \alpha : M \to M' be a homomorphism of finite A-modules of dimension 1. Let a, b \in A. Assume

  1. a, b are nonzerodivisors on both M and M', and

  2. \dim (\mathop{\mathrm{Ker}}(\alpha )), \dim (\mathop{\mathrm{Coker}}(\alpha )) \leq 0.

Then d_ M(a, b) = d_{M'}(a, b).

Proof. If a \in A^*, then the equality follows from the equality \text{length}(M/bM) = \text{length}(M'/bM') and Lemma 42.68.33. Similarly if b is a unit the lemma holds as well (by the symmetry of Lemma 42.68.30). Hence we may assume that a, b \in \mathfrak m_ A. This in particular implies that \mathfrak m is not an associated prime of M, and hence \alpha : M \to M' is injective. This permits us to think of M as a submodule of M'. By assumption M'/M is a finite A-module with support \{ \mathfrak m_ A\} and hence has finite length. Note that for any third module M'' with M \subset M'' \subset M' the maps M \to M'' and M'' \to M' satisfy the assumptions of the lemma as well. This reduces us, by induction on the length of M'/M, to the case where \text{length}_ A(M'/M) = 1. Finally, in this case consider the map

\overline{\alpha } : M/abM \longrightarrow M'/abM'.

By construction the cokernel Q of \overline{\alpha } has length 1. Since a, b \in \mathfrak m_ A, they act trivially on Q. It also follows that the kernel K of \overline{\alpha } has length 1 and hence also a, b act trivially on K. Hence we may apply Lemma 42.68.25. Thus it suffices to see that the two maps \alpha _ i : Q \to K are the same. In fact, both maps are equal to the map q = x' \bmod \mathop{\mathrm{Im}}(\overline{\alpha }) \mapsto abx' \in K. We omit the verification. \square

Lemma 42.68.36. Let A be a Noetherian local ring. Let M be a finite A-module with \dim (\text{Supp}(M)) = 1. Let a, b \in A nonzerodivisors on M. Let \mathfrak q_1, \ldots , \mathfrak q_ t be the minimal primes in the support of M. Then

d_ M(a, b) = \prod \nolimits _{i = 1, \ldots , t} d_{A/\mathfrak q_ i}(a, b)^{ \text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i})}

as elements of \kappa ^*.

Proof. Choose a filtration by A-submodules

0 = M_0 \subset M_1 \subset \ldots \subset M_ n = M

such that each quotient M_ j/M_{j - 1} is isomorphic to A/\mathfrak p_ j for some prime ideal \mathfrak p_ j of A. See Algebra, Lemma 10.62.1. For each j we have either \mathfrak p_ j = \mathfrak q_ i for some i, or \mathfrak p_ j = \mathfrak m_ A. Moreover, for a fixed i, the number of j such that \mathfrak p_ j = \mathfrak q_ i is equal to \text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i}) by Algebra, Lemma 10.62.5. Hence d_{M_ j}(a, b) is defined for each j and

d_{M_ j}(a, b) = \left\{ \begin{matrix} d_{M_{j - 1}}(a, b) d_{A/\mathfrak q_ i}(a, b) & \text{if} & \mathfrak p_ j = \mathfrak q_ i \\ d_{M_{j - 1}}(a, b) & \text{if} & \mathfrak p_ j = \mathfrak m_ A \end{matrix} \right.

by Lemma 42.68.34 in the first instance and Lemma 42.68.35 in the second. Hence the lemma. \square

Lemma 42.68.37. Let A be a discrete valuation ring with fraction field K. For nonzero x, y \in K we have

d_ A(x, y) = (-1)^{\text{ord}_ A(x)\text{ord}_ A(y)} \frac{x^{\text{ord}_ A(y)}}{y^{\text{ord}_ A(x)}} \bmod \mathfrak m_ A,

in other words the symbol is equal to the usual tame symbol.

Proof. By multiplicativity it suffices to prove this when x, y \in A. Let t \in A be a uniformizer. Write x = t^ bu and y = t^ bv for some a, b \geq 0 and u, v \in A^*. Set l = a + b. Then t^{l - 1}, \ldots , t^ b is an admissible sequence in (x)/(xy) and t^{l - 1}, \ldots , t^ a is an admissible sequence in (y)/(xy). Hence by Remark 42.68.14 we see that d_ A(x, y) is characterized by the equation

[t^{l - 1}, \ldots , t^ b, v^{-1}t^{b - 1}, \ldots , v^{-1}] = (-1)^{ab} d_ A(x, y) [t^{l - 1}, \ldots , t^ a, u^{-1}t^{a - 1}, \ldots , u^{-1}].

Hence by the admissible relations for the symbols [x_1, \ldots , x_ l] we see that

d_ A(x, y) = (-1)^{ab} u^ a/v^ b \bmod \mathfrak m_ A

as desired. \square

Lemma 42.68.38. Let A be a Noetherian local ring. Let a, b \in A. Let M be a finite A-module of dimension 1 on which each of a, b, b - a are nonzerodivisors. Then

d_ M(a, b - a)d_ M(b, b) = d_ M(b, b - a)d_ M(a, b)

in \kappa ^*.

Proof. By Lemma 42.68.36 it suffices to show the relation when M = A/\mathfrak q for some prime \mathfrak q \subset A with \dim (A/\mathfrak q) = 1.

In case M = A/\mathfrak q we may replace A by A/\mathfrak q and a, b by their images in A/\mathfrak q. Hence we may assume A = M and A a local Noetherian domain of dimension 1. The reason is that the residue field \kappa of A and A/\mathfrak q are the same and that for any A/\mathfrak q-module M the determinant taken over A or over A/\mathfrak q are canonically identified. See Lemma 42.68.8.

It suffices to show the relation when both a, b are in the maximal ideal. Namely, the case where one or both are units follows from Lemmas 42.68.33 and 42.68.32.

Choose an extension A \subset A' and factorizations a = ta', b = tb' as in Lemma 42.4.2. Note that also b - a = t(b' - a') and that A' = (a', b') = (a', b' - a') = (b' - a', b'). Here and in the following we think of A' as an A-module and a, b, a', b', t as A-module endomorphisms of A'. We will use the notation d^ A_{A'}(a', b') and so on to indicate

d^ A_{A'}(a', b') = \det \nolimits _\kappa (A'/a'b'A', a', b')

which is defined by Lemma 42.68.27. The upper index {}^ A is used to distinguish this from the already defined symbol d_{A'}(a', b') which is different (for example because it has values in the residue field of A' which may be different from \kappa ). By Lemma 42.68.35 we see that d_ A(a, b) = d^ A_{A'}(a, b), and similarly for the other combinations. Using this and multiplicativity we see that it suffices to prove

d^ A_{A'}(a', b' - a') d^ A_{A'}(b', b') = d^ A_{A'}(b', b' - a') d^ A_{A'}(a', b')

Now, since (a', b') = A' and so on we have

\begin{matrix} A'/(a'(b' - a')) & \cong & A'/(a') \oplus A'/(b' - a') \\ A'/(b'(b' - a')) & \cong & A'/(b') \oplus A'/(b' - a') \\ A'/(a'b') & \cong & A'/(a') \oplus A'/(b') \end{matrix}

Moreover, note that multiplication by b' - a' on A/(a') is equal to multiplication by b', and that multiplication by b' - a' on A/(b') is equal to multiplication by -a'. Using Lemmas 42.68.17 and 42.68.18 we conclude

\begin{matrix} d^ A_{A'}(a', b' - a') & = & \det \nolimits _\kappa (b'|_{A'/(a')})^{-1} \det \nolimits _\kappa (a'|_{A'/(b' - a')}) \\ d^ A_{A'}(b', b' - a') & = & \det \nolimits _\kappa (-a'|_{A'/(b')})^{-1} \det \nolimits _\kappa (b'|_{A'/(b' - a')}) \\ d^ A_{A'}(a', b') & = & \det \nolimits _\kappa (b'|_{A'/(a')})^{-1} \det \nolimits _\kappa (a'|_{A'/(b')}) \end{matrix}

Hence we conclude that

(-1)^{\text{length}_ A(A'/(b'))} d^ A_{A'}(a', b' - a') = d^ A_{A'}(b', b' - a') d^ A_{A'}(a', b')

the sign coming from the -a' in the second equality above. On the other hand, by Lemma 42.68.16 we have d^ A_{A'}(b', b') = (-1)^{\text{length}_ A(A'/(b'))} and the lemma is proved. \square

The tame symbol is a Steinberg symbol.

Lemma 42.68.39. Let A be a Noetherian local domain of dimension 1 with fraction field K. For x \in K \setminus \{ 0, 1\} we have

d_ A(x, 1 -x) = 1

Proof. Write x = a/b with a, b \in A. The hypothesis implies, since 1 - x = (b - a)/b, that also b - a \not= 0. Hence we compute

d_ A(x, 1 - x) = d_ A(a, b - a)d_ A(a, b)^{-1}d_ A(b, b - a)^{-1}d_ A(b, b)

Thus we have to show that d_ A(a, b - a) d_ A(b, b) = d_ A(b, b - a) d_ A(a, b). This is Lemma 42.68.38. \square

42.68.40 Lengths and determinants

In this section we use the determinant to compare lattices. The key lemma is the following.

Lemma 42.68.41. Let R be a Noetherian local ring. Let \mathfrak q \subset R be a prime with \dim (R/\mathfrak q) = 1. Let \varphi : M \to N be a homomorphism of finite R-modules. Assume there exist x_1, \ldots , x_ l \in M and y_1, \ldots , y_ l \in M with the following properties

  1. M = \langle x_1, \ldots , x_ l\rangle ,

  2. \langle x_1, \ldots , x_ i\rangle / \langle x_1, \ldots , x_{i - 1}\rangle \cong R/\mathfrak q for i = 1, \ldots , l,

  3. N = \langle y_1, \ldots , y_ l\rangle , and

  4. \langle y_1, \ldots , y_ i\rangle / \langle y_1, \ldots , y_{i - 1}\rangle \cong R/\mathfrak q for i = 1, \ldots , l.

Then \varphi is injective if and only if \varphi _{\mathfrak q} is an isomorphism, and in this case we have

\text{length}_ R(\mathop{\mathrm{Coker}}(\varphi )) = \text{ord}_{R/\mathfrak q}(f)

where f \in \kappa (\mathfrak q) is the element such that

[\varphi (x_1), \ldots , \varphi (x_ l)] = f [y_1, \ldots , y_ l]

in \det _{\kappa (\mathfrak q)}(N_{\mathfrak q}).

Proof. First, note that the lemma holds in case l = 1. Namely, in this case x_1 is a basis of M over R/\mathfrak q and y_1 is a basis of N over R/\mathfrak q and we have \varphi (x_1) = fy_1 for some f \in R. Thus \varphi is injective if and only if f \not\in \mathfrak q. Moreover, \mathop{\mathrm{Coker}}(\varphi ) = R/(f, \mathfrak q) and hence the lemma holds by definition of \text{ord}_{R/q}(f) (see Algebra, Definition 10.121.2).

In fact, suppose more generally that \varphi (x_ i) = f_ iy_ i for some f_ i \in R, f_ i \not\in \mathfrak q. Then the induced maps

\langle x_1, \ldots , x_ i\rangle / \langle x_1, \ldots , x_{i - 1}\rangle \longrightarrow \langle y_1, \ldots , y_ i\rangle / \langle y_1, \ldots , y_{i - 1}\rangle

are all injective and have cokernels isomorphic to R/(f_ i, \mathfrak q). Hence we see that

\text{length}_ R(\mathop{\mathrm{Coker}}(\varphi )) = \sum \text{ord}_{R/\mathfrak q}(f_ i).

On the other hand it is clear that

[\varphi (x_1), \ldots , \varphi (x_ l)] = f_1 \ldots f_ l [y_1, \ldots , y_ l]

in this case from the admissible relation (b) for symbols. Hence we see the result holds in this case also.

We prove the general case by induction on l. Assume l > 1. Let i \in \{ 1, \ldots , l\} be minimal such that \varphi (x_1) \in \langle y_1, \ldots , y_ i\rangle . We will argue by induction on i. If i = 1, then we get a commutative diagram

\xymatrix{ 0 \ar[r] & \langle x_1 \rangle \ar[r] \ar[d] & \langle x_1, \ldots , x_ l \rangle \ar[r] \ar[d] & \langle x_1, \ldots , x_ l \rangle / \langle x_1 \rangle \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \langle y_1 \rangle \ar[r] & \langle y_1, \ldots , y_ l \rangle \ar[r] & \langle y_1, \ldots , y_ l \rangle / \langle y_1 \rangle \ar[r] & 0 }

and the lemma follows from the snake lemma and induction on l. Assume now that i > 1. Write \varphi (x_1) = a_1 y_1 + \ldots + a_{i - 1} y_{i - 1} + a y_ i with a_ j, a \in R and a \not\in \mathfrak q (since otherwise i was not minimal). Set

x'_ j = \left\{ \begin{matrix} x_ j & \text{if} & j = 1 \\ ax_ j & \text{if} & j \geq 2 \end{matrix} \right. \quad \text{and}\quad y'_ j = \left\{ \begin{matrix} y_ j & \text{if} & j < i \\ ay_ j & \text{if} & j \geq i \end{matrix} \right.

Let M' = \langle x'_1, \ldots , x'_ l \rangle and N' = \langle y'_1, \ldots , y'_ l \rangle . Since \varphi (x'_1) = a_1 y'_1 + \ldots + a_{i - 1} y'_{i - 1} + y'_ i by construction and since for j > 1 we have \varphi (x'_ j) = a\varphi (x_ i) \in \langle y'_1, \ldots , y'_ l\rangle we get a commutative diagram of R-modules and maps

\xymatrix{ M' \ar[d] \ar[r]_{\varphi '} & N' \ar[d] \\ M \ar[r]^\varphi & N }

By the result of the second paragraph of the proof we know that \text{length}_ R(M/M') = (l - 1)\text{ord}_{R/\mathfrak q}(a) and similarly \text{length}_ R(M/M') = (l - i + 1)\text{ord}_{R/\mathfrak q}(a). By a diagram chase this implies that

\text{length}_ R(\mathop{\mathrm{Coker}}(\varphi ')) = \text{length}_ R(\mathop{\mathrm{Coker}}(\varphi )) + i\ \text{ord}_{R/\mathfrak q}(a).

On the other hand, it is clear that writing

[\varphi (x_1), \ldots , \varphi (x_ l)] = f [y_1, \ldots , y_ l], \quad [\varphi '(x'_1), \ldots , \varphi (x'_ l)] = f' [y'_1, \ldots , y'_ l]

we have f' = a^ if. Hence it suffices to prove the lemma for the case that \varphi (x_1) = a_1y_1 + \ldots a_{i - 1}y_{i - 1} + y_ i, i.e., in the case that a = 1. Next, recall that

[y_1, \ldots , y_ l] = [y_1, \ldots , y_{i - 1}, a_1y_1 + \ldots a_{i - 1}y_{i - 1} + y_ i, y_{i + 1}, \ldots , y_ l]

by the admissible relations for symbols. The sequence y_1, \ldots , y_{i - 1}, a_1y_1 + \ldots + a_{i - 1}y_{i - 1} + y_ i, y_{i + 1}, \ldots , y_ l satisfies the conditions (3), (4) of the lemma also. Hence, we may actually assume that \varphi (x_1) = y_ i. In this case, note that we have \mathfrak q x_1 = 0 which implies also \mathfrak q y_ i = 0. We have

[y_1, \ldots , y_ l] = - [y_1, \ldots , y_{i - 2}, y_ i, y_{i - 1}, y_{i + 1}, \ldots , y_ l]

by the third of the admissible relations defining \det _{\kappa (\mathfrak q)}(N_{\mathfrak q}). Hence we may replace y_1, \ldots , y_ l by the sequence y'_1, \ldots , y'_ l = y_1, \ldots , y_{i - 2}, y_ i, y_{i - 1}, y_{i + 1}, \ldots , y_ l (which also satisfies conditions (3) and (4) of the lemma). Clearly this decreases the invariant i by 1 and we win by induction on i. \square

To use the previous lemma we show that often sequences of elements with the required properties exist.

Lemma 42.68.42. Let R be a local Noetherian ring. Let \mathfrak q \subset R be a prime ideal. Let M be a finite R-module such that \mathfrak q is one of the minimal primes of the support of M. Then there exist x_1, \ldots , x_ l \in M such that

  1. the support of M / \langle x_1, \ldots , x_ l\rangle does not contain \mathfrak q, and

  2. \langle x_1, \ldots , x_ i\rangle / \langle x_1, \ldots , x_{i - 1}\rangle \cong R/\mathfrak q for i = 1, \ldots , l.

Moreover, in this case l = \text{length}_{R_\mathfrak q}(M_\mathfrak q).

Proof. The condition that \mathfrak q is a minimal prime in the support of M implies that l = \text{length}_{R_\mathfrak q}(M_\mathfrak q) is finite (see Algebra, Lemma 10.62.3). Hence we can find y_1, \ldots , y_ l \in M_{\mathfrak q} such that \langle y_1, \ldots , y_ i\rangle / \langle y_1, \ldots , y_{i - 1}\rangle \cong \kappa (\mathfrak q) for i = 1, \ldots , l. We can find f_ i \in R, f_ i \not\in \mathfrak q such that f_ i y_ i is the image of some element z_ i \in M. Moreover, as R is Noetherian we can write \mathfrak q = (g_1, \ldots , g_ t) for some g_ j \in R. By assumption g_ j y_ i \in \langle y_1, \ldots , y_{i - 1} \rangle inside the module M_{\mathfrak q}. By our choice of z_ i we can find some further elements f_{ji} \in R, f_{ij} \not\in \mathfrak q such that f_{ij} g_ j z_ i \in \langle z_1, \ldots , z_{i - 1} \rangle (equality in the module M). The lemma follows by taking

x_1 = f_{11}f_{12}\ldots f_{1t}z_1, \quad x_2 = f_{11}f_{12}\ldots f_{1t}f_{21}f_{22}\ldots f_{2t}z_2,

and so on. Namely, since all the elements f_ i, f_{ij} are invertible in R_{\mathfrak q} we still have that R_{\mathfrak q}x_1 + \ldots + R_{\mathfrak q}x_ i / R_{\mathfrak q}x_1 + \ldots + R_{\mathfrak q}x_{i - 1} \cong \kappa (\mathfrak q) for i = 1, \ldots , l. By construction, \mathfrak q x_ i \in \langle x_1, \ldots , x_{i - 1}\rangle . Thus \langle x_1, \ldots , x_ i\rangle / \langle x_1, \ldots , x_{i - 1}\rangle is an R-module generated by one element, annihilated \mathfrak q such that localizing at \mathfrak q gives a q-dimensional vector space over \kappa (\mathfrak q). Hence it is isomorphic to R/\mathfrak q. \square

Here is the main result of this section. We will see below the various different consequences of this proposition. The reader is encouraged to first prove the easier Lemma 42.68.44 his/herself.

Proposition 42.68.43. Let R be a local Noetherian ring with residue field \kappa . Suppose that (M, \varphi , \psi ) is a (2, 1)-periodic complex over R. Assume

  1. M is a finite R-module,

  2. the cohomology modules of (M, \varphi , \psi ) are of finite length, and

  3. \dim (\text{Supp}(M)) = 1.

Let \mathfrak q_ i, i = 1, \ldots , t be the minimal primes of the support of M. Then we have1

- e_ R(M, \varphi , \psi ) = \sum \nolimits _{i = 1, \ldots , t} \text{ord}_{R/\mathfrak q_ i}\left( \det \nolimits _{\kappa (\mathfrak q_ i)} (M_{\mathfrak q_ i}, \varphi _{\mathfrak q_ i}, \psi _{\mathfrak q_ i}) \right)

Proof. We first reduce to the case t = 1 in the following way. Note that \text{Supp}(M) = \{ \mathfrak m, \mathfrak q_1, \ldots , \mathfrak q_ t\} , where \mathfrak m \subset R is the maximal ideal. Let M_ i denote the image of M \to M_{\mathfrak q_ i}, so \text{Supp}(M_ i) = \{ \mathfrak m, \mathfrak q_ i\} . The map \varphi (resp. \psi ) induces an R-module map \varphi _ i : M_ i \to M_ i (resp. \psi _ i : M_ i \to M_ i). Thus we get a morphism of (2, 1)-periodic complexes

(M, \varphi , \psi ) \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , t} (M_ i, \varphi _ i, \psi _ i).

The kernel and cokernel of this map have support contained in \{ \mathfrak m\} . Hence by Lemma 42.2.5 we have

e_ R(M, \varphi , \psi ) = \sum \nolimits _{i = 1, \ldots , t} e_ R(M_ i, \varphi _ i, \psi _ i)

On the other hand we clearly have M_{\mathfrak q_ i} = M_{i, \mathfrak q_ i}, and hence the terms of the right hand side of the formula of the lemma are equal to the expressions

\text{ord}_{R/\mathfrak q_ i}\left( \det \nolimits _{\kappa (\mathfrak q_ i)} (M_{i, \mathfrak q_ i}, \varphi _{i, \mathfrak q_ i}, \psi _{i, \mathfrak q_ i}) \right)

In other words, if we can prove the lemma for each of the modules M_ i, then the lemma holds. This reduces us to the case t = 1.

Assume we have a (2, 1)-periodic complex (M, \varphi , \psi ) over a Noetherian local ring with M a finite R-module, \text{Supp}(M) = \{ \mathfrak m, \mathfrak q\} , and finite length cohomology modules. The proof in this case follows from Lemma 42.68.41 and careful bookkeeping. Denote K_\varphi = \mathop{\mathrm{Ker}}(\varphi ), I_\varphi = \mathop{\mathrm{Im}}(\varphi ), K_\psi = \mathop{\mathrm{Ker}}(\psi ), and I_\psi = \mathop{\mathrm{Im}}(\psi ). Since R is Noetherian these are all finite R-modules. Set

a = \text{length}_{R_{\mathfrak q}}(I_{\varphi , \mathfrak q}) = \text{length}_{R_{\mathfrak q}}(K_{\psi , \mathfrak q}), \quad b = \text{length}_{R_{\mathfrak q}}(I_{\psi , \mathfrak q}) = \text{length}_{R_{\mathfrak q}}(K_{\varphi , \mathfrak q}).

Equalities because the complex becomes exact after localizing at \mathfrak q. Note that l = \text{length}_{R_{\mathfrak q}}(M_{\mathfrak q}) is equal to l = a + b.

We are going to use Lemma 42.68.42 to choose sequences of elements in finite R-modules N with support contained in \{ \mathfrak m, \mathfrak q\} . In this case N_{\mathfrak q} has finite length, say n \in \mathbf{N}. Let us call a sequence w_1, \ldots , w_ n \in N with properties (1) and (2) of Lemma 42.68.42 a “good sequence”. Note that the quotient N/\langle w_1, \ldots , w_ n \rangle of N by the submodule generated by a good sequence has support (contained in) \{ \mathfrak m\} and hence has finite length (Algebra, Lemma 10.62.3). Moreover, the symbol [w_1, \ldots , w_ n] \in \det _{\kappa (\mathfrak q)}(N_{\mathfrak q}) is a generator, see Lemma 42.68.5.

Having said this we choose good sequences

\begin{matrix} x_1, \ldots , x_ b & \text{in} & K_\varphi , & t_1, \ldots , t_ a & \text{in} & K_\psi , \\ y_1, \ldots , y_ a & \text{in} & I_\varphi \cap \langle t_1, \ldots t_ a\rangle , & s_1, \ldots , s_ b & \text{in} & I_\psi \cap \langle x_1, \ldots , x_ b\rangle . \end{matrix}

We will adjust our choices a little bit as follows. Choose lifts \tilde y_ i \in M of y_ i \in I_\varphi and \tilde s_ i \in M of s_ i \in I_\psi . It may not be the case that \mathfrak q \tilde y_1 \subset \langle x_1, \ldots , x_ b\rangle and it may not be the case that \mathfrak q \tilde s_1 \subset \langle t_1, \ldots , t_ a\rangle . However, using that \mathfrak q is finitely generated (as in the proof of Lemma 42.68.42) we can find a d \in R, d \not\in \mathfrak q such that \mathfrak q d\tilde y_1 \subset \langle x_1, \ldots , x_ b\rangle and \mathfrak q d\tilde s_1 \subset \langle t_1, \ldots , t_ a\rangle . Thus after replacing y_ i by dy_ i, \tilde y_ i by d\tilde y_ i, s_ i by ds_ i and \tilde s_ i by d\tilde s_ i we see that we may assume also that x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ b and t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b are good sequences in M.

Finally, we choose a good sequence z_1, \ldots , z_ l in the finite R-module

\langle x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a \rangle \cap \langle t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b \rangle .

Note that this is also a good sequence in M.

Since I_{\varphi , \mathfrak q} = K_{\psi , \mathfrak q} there is a unique element h \in \kappa (\mathfrak q) such that [y_1, \ldots , y_ a] = h [t_1, \ldots , t_ a] inside \det _{\kappa (\mathfrak q)}(K_{\psi , \mathfrak q}). Similarly, as I_{\psi , \mathfrak q} = K_{\varphi , \mathfrak q} there is a unique element h \in \kappa (\mathfrak q) such that [s_1, \ldots , s_ b] = g [x_1, \ldots , x_ b] inside \det _{\kappa (\mathfrak q)}(K_{\varphi , \mathfrak q}). We can also do this with the three good sequences we have in M. All in all we get the following identities

\begin{align*} [y_1, \ldots , y_ a] & = h [t_1, \ldots , t_ a] \\ [s_1, \ldots , s_ b] & = g [x_1, \ldots , x_ b] \\ [z_1, \ldots , z_ l] & = f_\varphi [x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a] \\ [z_1, \ldots , z_ l] & = f_\psi [t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b] \end{align*}

for some g, h, f_\varphi , f_\psi \in \kappa (\mathfrak q).

Having set up all this notation let us compute \det _{\kappa (\mathfrak q)}(M, \varphi , \psi ). Namely, consider the element [z_1, \ldots , z_ l]. Under the map \gamma _\psi \circ \sigma \circ \gamma _\varphi ^{-1} of Definition 42.68.13 we have

\begin{eqnarray*} [z_1, \ldots , z_ l] & = & f_\varphi [x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a] \\ & \mapsto & f_\varphi [x_1, \ldots , x_ b] \otimes [y_1, \ldots , y_ a] \\ & \mapsto & f_\varphi h/g [t_1, \ldots , t_ a] \otimes [s_1, \ldots , s_ b] \\ & \mapsto & f_\varphi h/g [t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b] \\ & = & f_\varphi h/f_\psi g [z_1, \ldots , z_ l] \end{eqnarray*}

This means that \det _{\kappa (\mathfrak q)} (M_{\mathfrak q}, \varphi _{\mathfrak q}, \psi _{\mathfrak q}) is equal to f_\varphi h/f_\psi g up to a sign.

We abbreviate the following quantities

\begin{eqnarray*} k_\varphi & = & \text{length}_ R(K_\varphi /\langle x_1, \ldots , x_ b\rangle ) \\ k_\psi & = & \text{length}_ R(K_\psi /\langle t_1, \ldots , t_ a\rangle ) \\ i_\varphi & = & \text{length}_ R(I_\varphi /\langle y_1, \ldots , y_ a\rangle ) \\ i_\psi & = & \text{length}_ R(I_\psi /\langle s_1, \ldots , s_ a\rangle ) \\ m_\varphi & = & \text{length}_ R(M/ \langle x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a\rangle ) \\ m_\psi & = & \text{length}_ R(M/ \langle t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b\rangle ) \\ \delta _\varphi & = & \text{length}_ R( \langle x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a\rangle \langle z_1, \ldots , z_ l\rangle ) \\ \delta _\psi & = & \text{length}_ R( \langle t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b\rangle \langle z_1, \ldots , z_ l\rangle ) \end{eqnarray*}

Using the exact sequences 0 \to K_\varphi \to M \to I_\varphi \to 0 we get m_\varphi = k_\varphi + i_\varphi . Similarly we have m_\psi = k_\psi + i_\psi . We have \delta _\varphi + m_\varphi = \delta _\psi + m_\psi since this is equal to the colength of \langle z_1, \ldots , z_ l \rangle in M. Finally, we have

\delta _\varphi = \text{ord}_{R/\mathfrak q}(f_\varphi ), \quad \delta _\psi = \text{ord}_{R/\mathfrak q}(f_\psi )

by our first application of the key Lemma 42.68.41.

Next, let us compute the multiplicity of the periodic complex

\begin{eqnarray*} e_ R(M, \varphi , \psi ) & = & \text{length}_ R(K_\varphi /I_\psi ) - \text{length}_ R(K_\psi /I_\varphi ) \\ & = & \text{length}_ R( \langle x_1, \ldots , x_ b\rangle / \langle s_1, \ldots , s_ b\rangle ) + k_\varphi - i_\psi \\ & & - \text{length}_ R( \langle t_1, \ldots , t_ a\rangle / \langle y_1, \ldots , y_ a\rangle ) - k_\psi + i_\varphi \\ & = & \text{ord}_{R/\mathfrak q}(g/h) + k_\varphi - i_\psi - k_\psi + i_\varphi \\ & = & \text{ord}_{R/\mathfrak q}(g/h) + m_\varphi - m_\psi \\ & = & \text{ord}_{R/\mathfrak q}(g/h) + \delta _\psi - \delta _\varphi \\ & = & \text{ord}_{R/\mathfrak q}(f_\psi g/f_\varphi h) \end{eqnarray*}

where we used the key Lemma 42.68.41 twice in the third equality. By our computation of \det _{\kappa (\mathfrak q)} (M_{\mathfrak q}, \varphi _{\mathfrak q}, \psi _{\mathfrak q}) this proves the proposition. \square

In most applications the following lemma suffices.

Lemma 42.68.44. Let R be a Noetherian local ring with maximal ideal \mathfrak m. Let M be a finite R-module, and let \psi : M \to M be an R-module map. Assume that

  1. \mathop{\mathrm{Ker}}(\psi ) and \mathop{\mathrm{Coker}}(\psi ) have finite length, and

  2. \dim (\text{Supp}(M)) \leq 1.

Write \text{Supp}(M) = \{ \mathfrak m, \mathfrak q_1, \ldots , \mathfrak q_ t\} and denote f_ i \in \kappa (\mathfrak q_ i)^* the element such that \det _{\kappa (\mathfrak q_ i)}(\psi _{\mathfrak q_ i}) : \det _{\kappa (\mathfrak q_ i)}(M_{\mathfrak q_ i}) \to \det _{\kappa (\mathfrak q_ i)}(M_{\mathfrak q_ i}) is multiplication by f_ i. Then we have

\text{length}_ R(\mathop{\mathrm{Coker}}(\psi )) - \text{length}_ R(\mathop{\mathrm{Ker}}(\psi )) = \sum \nolimits _{i = 1, \ldots , t} \text{ord}_{R/\mathfrak q_ i}(f_ i).

Proof. Recall that H^0(M, 0, \psi ) = \mathop{\mathrm{Coker}}(\psi ) and H^1(M, 0, \psi ) = \mathop{\mathrm{Ker}}(\psi ), see remarks above Definition 42.2.2. The lemma follows by combining Proposition 42.68.43 with Lemma 42.68.17.

Alternative proof. Reduce to the case \text{Supp}(M) = \{ \mathfrak m, \mathfrak q\} as in the proof of Proposition 42.68.43. Then directly combine Lemmas 42.68.41 and 42.68.42 to prove this specific case of Proposition 42.68.43. There is much less bookkeeping in this case, and the reader is encouraged to work this out. Details omitted. \square

42.68.45 Application to the key lemma

In this section we apply the results above to show the analogue of the key lemma (Lemma 42.6.3) with the tame symbol d_ A constructed above. Please see Remark 42.6.4 for the relationship with Milnor K-theory.

Lemma 42.68.46 (Key Lemma).reference Let A be a 2-dimensional Noetherian local domain with fraction field K. Let f, g \in K^*. Let \mathfrak q_1, \ldots , \mathfrak q_ t be the height 1 primes \mathfrak q of A such that either f or g is not an element of A^*_{\mathfrak q}. Then we have

\sum \nolimits _{i = 1, \ldots , t} \text{ord}_{A/\mathfrak q_ i}(d_{A_{\mathfrak q_ i}}(f, g)) = 0

We can also write this as

\sum \nolimits _{\text{height}(\mathfrak q) = 1} \text{ord}_{A/\mathfrak q}(d_{A_{\mathfrak q}}(f, g)) = 0

since at any height one prime \mathfrak q of A where f, g \in A^*_{\mathfrak q} we have d_{A_{\mathfrak q}}(f, g) = 1 by Lemma 42.68.33.

Proof. Since the tame symbols d_{A_{\mathfrak q}}(f, g) are additive (Lemma 42.68.30) and the order functions \text{ord}_{A/\mathfrak q} are additive (Algebra, Lemma 10.121.1) it suffices to prove the formula when f = a \in A and g = b \in A. In this case we see that we have to show

\sum \nolimits _{\text{height}(\mathfrak q) = 1} \text{ord}_{A/\mathfrak q}(\det \nolimits _\kappa (A_{\mathfrak q}/(ab), a, b)) = 0

By Proposition 42.68.43 this is equivalent to showing that

e_ A(A/(ab), a, b) = 0.

Since the complex A/(ab) \xrightarrow {a} A/(ab) \xrightarrow {b} A/(ab) \xrightarrow {a} A/(ab) is exact we win. \square

[1] Obviously we could get rid of the minus sign by redefining \det _\kappa (M, \varphi , \psi ) as the inverse of its current value, see Definition 42.68.13.

Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.