Lemma 42.68.33. Let A be a Noetherian local ring. Let M be a finite A-module of dimension 1. Let b \in A be a nonzerodivisor on M, and let u \in A^*. Then
In particular, if M = A, then d_ A(u, b) = u^{\text{ord}_ A(b)} \bmod \mathfrak m_ A.
Lemma 42.68.33. Let A be a Noetherian local ring. Let M be a finite A-module of dimension 1. Let b \in A be a nonzerodivisor on M, and let u \in A^*. Then
In particular, if M = A, then d_ A(u, b) = u^{\text{ord}_ A(b)} \bmod \mathfrak m_ A.
Proof. Note that in this case M/ubM = M/bM on which multiplication by b is zero. Hence d_ M(u, b) = \det _\kappa (u|_{M/bM}) by Lemma 42.68.17. The lemma then follows from Lemma 42.68.10. \square
Comments (0)