Lemma 42.68.15. Let $R$ be a local ring with residue field $\kappa $. Let $(M, \varphi , \psi )$ be a $(2, 1)$-periodic complex over $R$. Assume that $M$ has finite length and that $(M, \varphi , \psi )$ is exact. Then
\[ \det \nolimits _\kappa (M, \varphi , \psi ) \det \nolimits _\kappa (M, \psi , \varphi ) = 1. \]
Comments (0)