Lemma 42.68.42. Let R be a local Noetherian ring. Let \mathfrak q \subset R be a prime ideal. Let M be a finite R-module such that \mathfrak q is one of the minimal primes of the support of M. Then there exist x_1, \ldots , x_ l \in M such that
the support of M / \langle x_1, \ldots , x_ l\rangle does not contain \mathfrak q, and
\langle x_1, \ldots , x_ i\rangle / \langle x_1, \ldots , x_{i - 1}\rangle \cong R/\mathfrak q for i = 1, \ldots , l.
Moreover, in this case l = \text{length}_{R_\mathfrak q}(M_\mathfrak q).
Proof.
The condition that \mathfrak q is a minimal prime in the support of M implies that l = \text{length}_{R_\mathfrak q}(M_\mathfrak q) is finite (see Algebra, Lemma 10.62.3). Hence we can find y_1, \ldots , y_ l \in M_{\mathfrak q} such that \langle y_1, \ldots , y_ i\rangle / \langle y_1, \ldots , y_{i - 1}\rangle \cong \kappa (\mathfrak q) for i = 1, \ldots , l. We can find f_ i \in R, f_ i \not\in \mathfrak q such that f_ i y_ i is the image of some element z_ i \in M. Moreover, as R is Noetherian we can write \mathfrak q = (g_1, \ldots , g_ t) for some g_ j \in R. By assumption g_ j y_ i \in \langle y_1, \ldots , y_{i - 1} \rangle inside the module M_{\mathfrak q}. By our choice of z_ i we can find some further elements f_{ji} \in R, f_{ij} \not\in \mathfrak q such that f_{ij} g_ j z_ i \in \langle z_1, \ldots , z_{i - 1} \rangle (equality in the module M). The lemma follows by taking
x_1 = f_{11}f_{12}\ldots f_{1t}z_1, \quad x_2 = f_{11}f_{12}\ldots f_{1t}f_{21}f_{22}\ldots f_{2t}z_2,
and so on. Namely, since all the elements f_ i, f_{ij} are invertible in R_{\mathfrak q} we still have that R_{\mathfrak q}x_1 + \ldots + R_{\mathfrak q}x_ i / R_{\mathfrak q}x_1 + \ldots + R_{\mathfrak q}x_{i - 1} \cong \kappa (\mathfrak q) for i = 1, \ldots , l. By construction, \mathfrak q x_ i \in \langle x_1, \ldots , x_{i - 1}\rangle . Thus \langle x_1, \ldots , x_ i\rangle / \langle x_1, \ldots , x_{i - 1}\rangle is an R-module generated by one element, annihilated \mathfrak q such that localizing at \mathfrak q gives a q-dimensional vector space over \kappa (\mathfrak q). Hence it is isomorphic to R/\mathfrak q.
\square
Comments (0)