Example 42.68.11. Consider the local ring R = \mathbf{Z}_ p. Set M = \mathbf{Z}_ p/(p^2) \oplus \mathbf{Z}_ p/(p^3). Let u : M \to M be the map given by the matrix
where a, b, c, d \in \mathbf{Z}_ p, and a, d \in \mathbf{Z}_ p^*. In this case \det _\kappa (u) equals multiplication by a^2d^3 \bmod p \in \mathbf{F}_ p^*. This can easily be seen by consider the effect of u on the symbol [p^2e, pe, pf, e, f] where e = (0 , 1) \in M and f = (1, 0) \in M.
Comments (0)