Lemma 42.68.6. Let $(R, \mathfrak m, \kappa )$ be a local ring. For every short exact sequence

$0 \to K \to L \to M \to 0$

of finite length $R$-modules there exists a canonical isomorphism

$\gamma _{K \to L \to M} : \det \nolimits _\kappa (K) \otimes _\kappa \det \nolimits _\kappa (M) \longrightarrow \det \nolimits _\kappa (L)$

defined by the rule on nonzero symbols

$[e_1, \ldots , e_ k] \otimes [\overline{f}_1, \ldots , \overline{f}_ m] \longrightarrow [e_1, \ldots , e_ k, f_1, \ldots , f_ m]$

with the following properties:

1. For every isomorphism of short exact sequences, i.e., for every commutative diagram

$\xymatrix{ 0 \ar[r] & K \ar[r] \ar[d]^ u & L \ar[r] \ar[d]^ v & M \ar[r] \ar[d]^ w & 0 \\ 0 \ar[r] & K' \ar[r] & L' \ar[r] & M' \ar[r] & 0 }$

with short exact rows and isomorphisms $u, v, w$ we have

$\gamma _{K' \to L' \to M'} \circ (\det \nolimits _\kappa (u) \otimes \det \nolimits _\kappa (w)) = \det \nolimits _\kappa (v) \circ \gamma _{K \to L \to M},$
2. for every commutative square of finite length $R$-modules with exact rows and columns

$\xymatrix{ & 0 \ar[d] & 0 \ar[d] & 0 \ar[d] & \\ 0 \ar[r] & A \ar[r] \ar[d] & B \ar[r] \ar[d] & C \ar[r] \ar[d] & 0 \\ 0 \ar[r] & D \ar[r] \ar[d] & E \ar[r] \ar[d] & F \ar[r] \ar[d] & 0 \\ 0 \ar[r] & G \ar[r] \ar[d] & H \ar[r] \ar[d] & I \ar[r] \ar[d] & 0 \\ & 0 & 0 & 0 & }$

the following diagram is commutative

$\xymatrix{ \det \nolimits _\kappa (A) \otimes \det \nolimits _\kappa (C) \otimes \det \nolimits _\kappa (G) \otimes \det \nolimits _\kappa (I) \ar[dd]_{\epsilon } \ar[rrr]_-{\gamma _{A \to B \to C} \otimes \gamma _{G \to H \to I}} & & & \det \nolimits _\kappa (B) \otimes \det \nolimits _\kappa (H) \ar[d]^{\gamma _{B \to E \to H}} \\ & & & \det \nolimits _\kappa (E) \\ \det \nolimits _\kappa (A) \otimes \det \nolimits _\kappa (G) \otimes \det \nolimits _\kappa (C) \otimes \det \nolimits _\kappa (I) \ar[rrr]^-{\gamma _{A \to D \to G} \otimes \gamma _{C \to F \to I}} & & & \det \nolimits _\kappa (D) \otimes \det \nolimits _\kappa (F) \ar[u]_{\gamma _{D \to E \to F}} }$

where $\epsilon$ is the switch of the factors in the tensor product times $(-1)^{cg}$ with $c = \text{length}_ R(C)$ and $g = \text{length}_ R(G)$, and

3. the map $\gamma _{K \to L \to M}$ agrees with the usual isomorphism if $0 \to K \to L \to M \to 0$ is actually a short exact sequence of $\kappa$-vector spaces.

Proof. The significance of taking nonzero symbols in the explicit description of the map $\gamma _{K \to L \to M}$ is simply that if $(e_1, \ldots , e_ l)$ is an admissible sequence in $K$, and $(\overline{f}_1, \ldots , \overline{f}_ m)$ is an admissible sequence in $M$, then it is not guaranteed that $(e_1, \ldots , e_ l, f_1, \ldots , f_ m)$ is an admissible sequence in $L$ (where of course $f_ i \in L$ signifies a lift of $\overline{f}_ i$). However, if the symbol $[e_1, \ldots , e_ l]$ is nonzero in $\det _\kappa (K)$, then necessarily $K = \langle e_1, \ldots , e_ k\rangle$ (see proof of Lemma 42.68.3), and in this case it is true that $(e_1, \ldots , e_ k, f_1, \ldots , f_ m)$ is an admissible sequence. Moreover, by the admissible relations of type (b) for $\det _\kappa (L)$ we see that the value of $[e_1, \ldots , e_ k, f_1, \ldots , f_ m]$ in $\det _\kappa (L)$ is independent of the choice of the lifts $f_ i$ in this case also. Given this remark, it is clear that an admissible relation for $e_1, \ldots , e_ k$ in $K$ translates into an admissible relation among $e_1, \ldots , e_ k, f_1, \ldots , f_ m$ in $L$, and similarly for an admissible relation among the $\overline{f}_1, \ldots , \overline{f}_ m$. Thus $\gamma$ defines a linear map of vector spaces as claimed in the lemma.

By Lemma 42.68.5 we know $\det _\kappa (L)$ is generated by any single symbol $[x_1, \ldots , x_{k + m}]$ such that $(x_1, \ldots , x_{k + m})$ is an admissible sequence with $L = \langle x_1, \ldots , x_{k + m}\rangle$. Hence it is clear that the map $\gamma _{K \to L \to M}$ is surjective and hence an isomorphism.

Property (1) holds because

\begin{eqnarray*} & & \det \nolimits _\kappa (v)([e_1, \ldots , e_ k, f_1, \ldots , f_ m]) \\ & = & [v(e_1), \ldots , v(e_ k), v(f_1), \ldots , v(f_ m)] \\ & = & \gamma _{K' \to L' \to M'}([u(e_1), \ldots , u(e_ k)] \otimes [w(f_1), \ldots , w(f_ m)]). \end{eqnarray*}

Property (2) means that given a symbol $[\alpha _1, \ldots , \alpha _ a]$ generating $\det _\kappa (A)$, a symbol $[\gamma _1, \ldots , \gamma _ c]$ generating $\det _\kappa (C)$, a symbol $[\zeta _1, \ldots , \zeta _ g]$ generating $\det _\kappa (G)$, and a symbol $[\iota _1, \ldots , \iota _ i]$ generating $\det _\kappa (I)$ we have

\begin{eqnarray*} & & [\alpha _1, \ldots , \alpha _ a, \tilde\gamma _1, \ldots , \tilde\gamma _ c, \tilde\zeta _1, \ldots , \tilde\zeta _ g, \tilde\iota _1, \ldots , \tilde\iota _ i] \\ & = & (-1)^{cg} [\alpha _1, \ldots , \alpha _ a, \tilde\zeta _1, \ldots , \tilde\zeta _ g, \tilde\gamma _1, \ldots , \tilde\gamma _ c, \tilde\iota _1, \ldots , \tilde\iota _ i] \end{eqnarray*}

(for suitable lifts $\tilde{x}$ in $E$) in $\det _\kappa (E)$. This holds because we may use the admissible relations of type (c) $cg$ times in the following order: move the $\tilde\zeta _1$ past the elements $\tilde\gamma _ c, \ldots , \tilde\gamma _1$ (allowed since $\mathfrak m\tilde\zeta _1 \subset A$), then move $\tilde\zeta _2$ past the elements $\tilde\gamma _ c, \ldots , \tilde\gamma _1$ (allowed since $\mathfrak m\tilde\zeta _2 \subset A + R\tilde\zeta _1$), and so on.

Part (3) of the lemma is obvious. This finishes the proof. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).