The Stacks project

Lemma 42.68.7. Let $(R, \mathfrak m, \kappa )$ be any local ring. The functor

\[ \det \nolimits _\kappa : \left\{ \begin{matrix} \text{finite length }R\text{-modules} \\ \text{with isomorphisms} \end{matrix} \right\} \longrightarrow \left\{ \begin{matrix} 1\text{-dimensional }\kappa \text{-vector spaces} \\ \text{with isomorphisms} \end{matrix} \right\} \]

endowed with the maps $\gamma _{K \to L \to M}$ is characterized by the following properties

  1. its restriction to the subcategory of modules annihilated by $\mathfrak m$ is isomorphic to the usual determinant functor (see Lemma 42.68.4), and

  2. (1), (2) and (3) of Lemma 42.68.6 hold.

Proof. Omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02PB. Beware of the difference between the letter 'O' and the digit '0'.