Lemma 42.68.25. Let R be a local ring with residue field \kappa . Let \alpha : (M, \varphi , \psi ) \to (M', \varphi ', \psi ') be a morphism of (2, 1)-periodic complexes over R. Assume
M, M' have finite length,
(M, \varphi , \psi ), (M', \varphi ', \psi ') are exact,
the maps \varphi , \psi induce the zero map on K = \mathop{\mathrm{Ker}}(\alpha ), and
the maps \varphi , \psi induce the zero map on Q = \mathop{\mathrm{Coker}}(\alpha ).
Denote N = \alpha (M) \subset M'. We obtain two short exact sequences of (2, 1)-periodic complexes
\begin{matrix} 0 \to (N, \varphi ', \psi ') \to (M', \varphi ', \psi ') \to (Q, 0, 0) \to 0
\\ 0 \to (K, 0, 0) \to (M, \varphi , \psi ) \to (N, \varphi ', \psi ') \to 0
\end{matrix}
which induce two isomorphisms \alpha _ i : Q \to K, i = 0, 1. Then
\det \nolimits _\kappa (M, \varphi , \psi ) = \det \nolimits _\kappa (\alpha _0^{-1} \circ \alpha _1) \det \nolimits _\kappa (M', \varphi ', \psi ')
In particular, if \alpha _0 = \alpha _1, then \det \nolimits _\kappa (M, \varphi , \psi ) = \det \nolimits _\kappa (M', \varphi ', \psi ').
Proof.
There are (at least) two ways to prove this lemma. One is to produce an enormous commutative diagram using the properties of the determinants. The other is to use the characterization of the determinants in terms of admissible sequences of elements. It is the second approach that we will use.
First let us explain precisely what the maps \alpha _ i are. Namely, \alpha _0 is the composition
\alpha _0 : Q = H^0(Q, 0, 0) \to H^1(N, \varphi ', \psi ') \to H^2(K, 0, 0) = K
and \alpha _1 is the composition
\alpha _1 : Q = H^1(Q, 0, 0) \to H^2(N, \varphi ', \psi ') \to H^3(K, 0, 0) = K
coming from the boundary maps of the short exact sequences of complexes displayed in the lemma. The fact that the complexes (M, \varphi , \psi ), (M', \varphi ', \psi ') are exact implies these maps are isomorphisms.
We will use the notation I_\varphi = \mathop{\mathrm{Im}}(\varphi ), K_\varphi = \mathop{\mathrm{Ker}}(\varphi ) and similarly for the other maps. Exactness for M and M' means that K_\varphi = I_\psi and three similar equalities. We introduce k = \text{length}_ R(K), a = \text{length}_ R(I_\varphi ), b = \text{length}_ R(I_\psi ). Then we see that \text{length}_ R(M) = a + b, and \text{length}_ R(N) = a + b - k, \text{length}_ R(Q) = k and \text{length}_ R(M') = a + b. The exact sequences below will show that also \text{length}_ R(I_{\varphi '}) = a and \text{length}_ R(I_{\psi '}) = b.
The assumption that K \subset K_\varphi = I_\psi means that \varphi factors through N to give an exact sequence
0 \to \alpha (I_\psi ) \to N \xrightarrow {\varphi \alpha ^{-1}} I_\psi \to 0.
Here \varphi \alpha ^{-1}(x') = y means x' = \alpha (x) and y = \varphi (x). Similarly, we have
0 \to \alpha (I_\varphi ) \to N \xrightarrow {\psi \alpha ^{-1}} I_\varphi \to 0.
The assumption that \psi ' induces the zero map on Q means that I_{\psi '} = K_{\varphi '} \subset N. This means the quotient \varphi '(N) \subset I_{\varphi '} is identified with Q. Note that \varphi '(N) = \alpha (I_\varphi ). Hence we conclude there is an isomorphism
\varphi ' : Q \to I_{\varphi '}/\alpha (I_\varphi )
simply described by \varphi '(x' \bmod N) = \varphi '(x') \bmod \alpha (I_\varphi ). In exactly the same way we get
\psi ' : Q \to I_{\psi '}/\alpha (I_\psi )
Finally, note that \alpha _0 is the composition
\xymatrix{ Q \ar[r]^-{\varphi '} & I_{\varphi '}/\alpha (I_\varphi ) \ar[rrr]^-{\psi \alpha ^{-1}|_{I_{\varphi '}/\alpha (I_\varphi )}} & & & K }
and similarly \alpha _1 = \varphi \alpha ^{-1}|_{I_{\psi '}/\alpha (I_\psi )} \circ \psi '.
To shorten the formulas below we are going to write \alpha x instead of \alpha (x) in the following. No confusion should result since all maps are indicated by Greek letters and elements by Roman letters. We are going to choose
an admissible sequence z_1, \ldots , z_ k \in K generating K,
elements z'_ i \in M such that \varphi z'_ i = z_ i,
elements z''_ i \in M such that \psi z''_ i = z_ i,
elements x_{k + 1}, \ldots , x_ a \in I_\varphi such that z_1, \ldots , z_ k, x_{k + 1}, \ldots , x_ a is an admissible sequence generating I_\varphi ,
elements \tilde x_ i \in M such that \varphi \tilde x_ i = x_ i,
elements y_{k + 1}, \ldots , y_ b \in I_\psi such that z_1, \ldots , z_ k, y_{k + 1}, \ldots , y_ b is an admissible sequence generating I_\psi ,
elements \tilde y_ i \in M such that \psi \tilde y_ i = y_ i, and
elements w_1, \ldots , w_ k \in M' such that w_1 \bmod N, \ldots , w_ k \bmod N are an admissible sequence in Q generating Q.
By Remark 42.68.14 the element D = \det _\kappa (M, \varphi , \psi ) \in \kappa ^* is characterized by
\begin{eqnarray*} & & [z_1, \ldots , z_ k, x_{k + 1}, \ldots , x_ a, z''_1, \ldots , z''_ k, \tilde y_{k + 1}, \ldots , \tilde y_ b] \\ & = & (-1)^{ab} D [z_1, \ldots , z_ k, y_{k + 1}, \ldots , y_ b, z'_1, \ldots , z'_ k, \tilde x_{k + 1}, \ldots , \tilde x_ a] \end{eqnarray*}
Note that by the discussion above \alpha x_{k + 1}, \ldots , \alpha x_ a, \varphi w_1, \ldots , \varphi w_ k is an admissible sequence generating I_{\varphi '} and \alpha y_{k + 1}, \ldots , \alpha y_ b, \psi w_1, \ldots , \psi w_ k is an admissible sequence generating I_{\psi '}. Hence by Remark 42.68.14 the element D' = \det _\kappa (M', \varphi ', \psi ') \in \kappa ^* is characterized by
\begin{eqnarray*} & & [\alpha x_{k + 1}, \ldots , \alpha x_ a, \varphi ' w_1, \ldots , \varphi ' w_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b, w_1, \ldots , w_ k] \\ & = & (-1)^{ab} D' [\alpha y_{k + 1}, \ldots , \alpha y_ b, \psi ' w_1, \ldots , \psi ' w_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a, w_1, \ldots , w_ k] \end{eqnarray*}
Note how in the first, resp. second displayed formula the first, resp. last k entries of the symbols on both sides are the same. Hence these formulas are really equivalent to the equalities
\begin{eqnarray*} & & [\alpha x_{k + 1}, \ldots , \alpha x_ a, \alpha z''_1, \ldots , \alpha z''_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b] \\ & = & (-1)^{ab} D [\alpha y_{k + 1}, \ldots , \alpha y_ b, \alpha z'_1, \ldots , \alpha z'_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a] \end{eqnarray*}
and
\begin{eqnarray*} & & [\alpha x_{k + 1}, \ldots , \alpha x_ a, \varphi ' w_1, \ldots , \varphi ' w_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b] \\ & = & (-1)^{ab} D' [\alpha y_{k + 1}, \ldots , \alpha y_ b, \psi ' w_1, \ldots , \psi ' w_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a] \end{eqnarray*}
in \det _\kappa (N). Note that \varphi ' w_1, \ldots , \varphi ' w_ k and \alpha z''_1, \ldots , z''_ k are admissible sequences generating the module I_{\varphi '}/\alpha (I_\varphi ). Write
[\varphi ' w_1, \ldots , \varphi ' w_ k] = \lambda _0 [\alpha z''_1, \ldots , \alpha z''_ k]
in \det _\kappa (I_{\varphi '}/\alpha (I_\varphi )) for some \lambda _0 \in \kappa ^*. Similarly, write
[\psi ' w_1, \ldots , \psi ' w_ k] = \lambda _1 [\alpha z'_1, \ldots , \alpha z'_ k]
in \det _\kappa (I_{\psi '}/\alpha (I_\psi )) for some \lambda _1 \in \kappa ^*. On the one hand it is clear that
\alpha _ i([w_1, \ldots , w_ k]) = \lambda _ i[z_1, \ldots , z_ k]
for i = 0, 1 by our description of \alpha _ i above, which means that
\det \nolimits _\kappa (\alpha _0^{-1} \circ \alpha _1) = \lambda _1/\lambda _0
and on the other hand it is clear that
\begin{eqnarray*} & & \lambda _0 [\alpha x_{k + 1}, \ldots , \alpha x_ a, \alpha z''_1, \ldots , \alpha z''_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b] \\ & = & [\alpha x_{k + 1}, \ldots , \alpha x_ a, \varphi ' w_1, \ldots , \varphi ' w_ k, \alpha \tilde y_{k + 1}, \ldots , \alpha \tilde y_ b] \end{eqnarray*}
and
\begin{eqnarray*} & & \lambda _1[\alpha y_{k + 1}, \ldots , \alpha y_ b, \alpha z'_1, \ldots , \alpha z'_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a] \\ & = & [\alpha y_{k + 1}, \ldots , \alpha y_ b, \psi ' w_1, \ldots , \psi ' w_ k, \alpha \tilde x_{k + 1}, \ldots , \alpha \tilde x_ a] \end{eqnarray*}
which imply \lambda _0 D = \lambda _1 D'. The lemma follows.
\square
Comments (0)