Lemma 42.68.27. Let $A$ be a Noetherian local ring. Let $M$ be a finite $A$-module of dimension $1$. Assume $\varphi , \psi : M \to M$ are two injective $A$-module maps, and assume $\varphi (\psi (M)) = \psi (\varphi (M))$, for example if $\varphi $ and $\psi $ commute. Then $\text{length}_ R(M/\varphi \psi M) < \infty $ and $(M/\varphi \psi M, \varphi , \psi )$ is an exact $(2, 1)$-periodic complex.

### 42.68.26 Symbols

The correct generality for this construction is perhaps the situation of the following lemma.

**Proof.**
Let $\mathfrak q$ be a minimal prime of the support of $M$. Then $M_{\mathfrak q}$ is a finite length $A_{\mathfrak q}$-module, see Algebra, Lemma 10.62.3. Hence both $\varphi $ and $\psi $ induce isomorphisms $M_{\mathfrak q} \to M_{\mathfrak q}$. Thus the support of $M/\varphi \psi M$ is $\{ \mathfrak m_ A\} $ and hence it has finite length (see lemma cited above). Finally, the kernel of $\varphi $ on $M/\varphi \psi M$ is clearly $\psi M/\varphi \psi M$, and hence the kernel of $\varphi $ is the image of $\psi $ on $M/\varphi \psi M$. Similarly the other way since $M/\varphi \psi M = M/\psi \varphi M$ by assumption.
$\square$

Lemma 42.68.28. Let $A$ be a Noetherian local ring. Let $a, b \in A$.

If $M$ is a finite $A$-module of dimension $1$ such that $a, b$ are nonzerodivisors on $M$, then $\text{length}_ A(M/abM) < \infty $ and $(M/abM, a, b)$ is a $(2, 1)$-periodic exact complex.

If $a, b$ are nonzerodivisors and $\dim (A) = 1$ then $\text{length}_ A(A/(ab)) < \infty $ and $(A/(ab), a, b)$ is a $(2, 1)$-periodic exact complex.

In particular, in these cases $\det _\kappa (M/abM, a, b) \in \kappa ^*$, resp. $\det _\kappa (A/(ab), a, b) \in \kappa ^*$ are defined.

**Proof.**
Follows from Lemma 42.68.27.
$\square$

Definition 42.68.29. Let $A$ be a Noetherian local ring with residue field $\kappa $. Let $a, b \in A$. Let $M$ be a finite $A$-module of dimension $1$ such that $a, b$ are nonzerodivisors on $M$. We define the *symbol associated to $M, a, b$* to be the element

Lemma 42.68.30. Let $A$ be a Noetherian local ring. Let $a, b, c \in A$. Let $M$ be a finite $A$-module with $\dim (\text{Supp}(M)) = 1$. Assume $a, b, c$ are nonzerodivisors on $M$. Then

and $d_ M(a, b)d_ M(b, a) = 1$.

**Proof.**
The first statement follows from Lemma 42.68.24 applied to $M/abcM$ and endomorphisms $\alpha , \beta , \gamma $ given by multiplication by $a, b, c$. The second comes from Lemma 42.68.15.
$\square$

Definition 42.68.31. Let $A$ be a Noetherian local domain of dimension $1$ with residue field $\kappa $. Let $K$ be the fraction field of $A$. We define the *tame symbol* of $A$ to be the map

where $d_ A(x, y)$ is extended to $K^* \times K^*$ by the multiplicativity of Lemma 42.68.30.

It is clear that we may extend more generally $d_ M(-, -)$ to certain rings of fractions of $A$ (even if $A$ is not a domain).

Lemma 42.68.32. Let $A$ be a Noetherian local ring and $M$ a finite $A$-module of dimension $1$. Let $a \in A$ be a nonzerodivisor on $M$. Then $d_ M(a, a) = (-1)^{\text{length}_ A(M/aM)}$.

**Proof.**
Immediate from Lemma 42.68.16.
$\square$

Lemma 42.68.33. Let $A$ be a Noetherian local ring. Let $M$ be a finite $A$-module of dimension $1$. Let $b \in A$ be a nonzerodivisor on $M$, and let $u \in A^*$. Then

In particular, if $M = A$, then $d_ A(u, b) = u^{\text{ord}_ A(b)} \bmod \mathfrak m_ A$.

**Proof.**
Note that in this case $M/ubM = M/bM$ on which multiplication by $b$ is zero. Hence $d_ M(u, b) = \det _\kappa (u|_{M/bM})$ by Lemma 42.68.17. The lemma then follows from Lemma 42.68.10.
$\square$

Lemma 42.68.34. Let $A$ be a Noetherian local ring. Let $a, b \in A$. Let

be a short exact sequence of $A$-modules of dimension $1$ such that $a, b$ are nonzerodivisors on all three $A$-modules. Then

in $\kappa ^*$.

**Proof.**
It is easy to see that this leads to a short exact sequence of exact $(2, 1)$-periodic complexes

Hence the lemma follows from Lemma 42.68.18. $\square$

Lemma 42.68.35. Let $A$ be a Noetherian local ring. Let $\alpha : M \to M'$ be a homomorphism of finite $A$-modules of dimension $1$. Let $a, b \in A$. Assume

$a$, $b$ are nonzerodivisors on both $M$ and $M'$, and

$\dim (\mathop{\mathrm{Ker}}(\alpha )), \dim (\mathop{\mathrm{Coker}}(\alpha )) \leq 0$.

Then $d_ M(a, b) = d_{M'}(a, b)$.

**Proof.**
If $a \in A^*$, then the equality follows from the equality $\text{length}(M/bM) = \text{length}(M'/bM')$ and Lemma 42.68.33. Similarly if $b$ is a unit the lemma holds as well (by the symmetry of Lemma 42.68.30). Hence we may assume that $a, b \in \mathfrak m_ A$. This in particular implies that $\mathfrak m$ is not an associated prime of $M$, and hence $\alpha : M \to M'$ is injective. This permits us to think of $M$ as a submodule of $M'$. By assumption $M'/M$ is a finite $A$-module with support $\{ \mathfrak m_ A\} $ and hence has finite length. Note that for any third module $M''$ with $M \subset M'' \subset M'$ the maps $M \to M''$ and $M'' \to M'$ satisfy the assumptions of the lemma as well. This reduces us, by induction on the length of $M'/M$, to the case where $\text{length}_ A(M'/M) = 1$. Finally, in this case consider the map

By construction the cokernel $Q$ of $\overline{\alpha }$ has length $1$. Since $a, b \in \mathfrak m_ A$, they act trivially on $Q$. It also follows that the kernel $K$ of $\overline{\alpha }$ has length $1$ and hence also $a$, $b$ act trivially on $K$. Hence we may apply Lemma 42.68.25. Thus it suffices to see that the two maps $\alpha _ i : Q \to K$ are the same. In fact, both maps are equal to the map $q = x' \bmod \mathop{\mathrm{Im}}(\overline{\alpha }) \mapsto abx' \in K$. We omit the verification. $\square$

Lemma 42.68.36. Let $A$ be a Noetherian local ring. Let $M$ be a finite $A$-module with $\dim (\text{Supp}(M)) = 1$. Let $a, b \in A$ nonzerodivisors on $M$. Let $\mathfrak q_1, \ldots , \mathfrak q_ t$ be the minimal primes in the support of $M$. Then

as elements of $\kappa ^*$.

**Proof.**
Choose a filtration by $A$-submodules

such that each quotient $M_ j/M_{j - 1}$ is isomorphic to $A/\mathfrak p_ j$ for some prime ideal $\mathfrak p_ j$ of $A$. See Algebra, Lemma 10.62.1. For each $j$ we have either $\mathfrak p_ j = \mathfrak q_ i$ for some $i$, or $\mathfrak p_ j = \mathfrak m_ A$. Moreover, for a fixed $i$, the number of $j$ such that $\mathfrak p_ j = \mathfrak q_ i$ is equal to $\text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i})$ by Algebra, Lemma 10.62.5. Hence $d_{M_ j}(a, b)$ is defined for each $j$ and

by Lemma 42.68.34 in the first instance and Lemma 42.68.35 in the second. Hence the lemma. $\square$

Lemma 42.68.37. Let $A$ be a discrete valuation ring with fraction field $K$. For nonzero $x, y \in K$ we have

in other words the symbol is equal to the usual tame symbol.

**Proof.**
By multiplicativity it suffices to prove this when $x, y \in A$. Let $t \in A$ be a uniformizer. Write $x = t^ bu$ and $y = t^ bv$ for some $a, b \geq 0$ and $u, v \in A^*$. Set $l = a + b$. Then $t^{l - 1}, \ldots , t^ b$ is an admissible sequence in $(x)/(xy)$ and $t^{l - 1}, \ldots , t^ a$ is an admissible sequence in $(y)/(xy)$. Hence by Remark 42.68.14 we see that $d_ A(x, y)$ is characterized by the equation

Hence by the admissible relations for the symbols $[x_1, \ldots , x_ l]$ we see that

as desired. $\square$

Lemma 42.68.38. Let $A$ be a Noetherian local ring. Let $a, b \in A$. Let $M$ be a finite $A$-module of dimension $1$ on which each of $a$, $b$, $b - a$ are nonzerodivisors. Then

in $\kappa ^*$.

**Proof.**
By Lemma 42.68.36 it suffices to show the relation when $M = A/\mathfrak q$ for some prime $\mathfrak q \subset A$ with $\dim (A/\mathfrak q) = 1$.

In case $M = A/\mathfrak q$ we may replace $A$ by $A/\mathfrak q$ and $a, b$ by their images in $A/\mathfrak q$. Hence we may assume $A = M$ and $A$ a local Noetherian domain of dimension $1$. The reason is that the residue field $\kappa $ of $A$ and $A/\mathfrak q$ are the same and that for any $A/\mathfrak q$-module $M$ the determinant taken over $A$ or over $A/\mathfrak q$ are canonically identified. See Lemma 42.68.8.

It suffices to show the relation when both $a, b$ are in the maximal ideal. Namely, the case where one or both are units follows from Lemmas 42.68.33 and 42.68.32.

Choose an extension $A \subset A'$ and factorizations $a = ta'$, $b = tb'$ as in Lemma 42.4.2. Note that also $b - a = t(b' - a')$ and that $A' = (a', b') = (a', b' - a') = (b' - a', b')$. Here and in the following we think of $A'$ as an $A$-module and $a, b, a', b', t$ as $A$-module endomorphisms of $A'$. We will use the notation $d^ A_{A'}(a', b')$ and so on to indicate

which is defined by Lemma 42.68.27. The upper index ${}^ A$ is used to distinguish this from the already defined symbol $d_{A'}(a', b')$ which is different (for example because it has values in the residue field of $A'$ which may be different from $\kappa $). By Lemma 42.68.35 we see that $d_ A(a, b) = d^ A_{A'}(a, b)$, and similarly for the other combinations. Using this and multiplicativity we see that it suffices to prove

Now, since $(a', b') = A'$ and so on we have

Moreover, note that multiplication by $b' - a'$ on $A/(a')$ is equal to multiplication by $b'$, and that multiplication by $b' - a'$ on $A/(b')$ is equal to multiplication by $-a'$. Using Lemmas 42.68.17 and 42.68.18 we conclude

Hence we conclude that

the sign coming from the $-a'$ in the second equality above. On the other hand, by Lemma 42.68.16 we have $d^ A_{A'}(b', b') = (-1)^{\text{length}_ A(A'/(b'))}$ and the lemma is proved. $\square$

The tame symbol is a Steinberg symbol.

Lemma 42.68.39. Let $A$ be a Noetherian local domain of dimension $1$ with fraction field $K$. For $x \in K \setminus \{ 0, 1\} $ we have

**Proof.**
Write $x = a/b$ with $a, b \in A$. The hypothesis implies, since $1 - x = (b - a)/b$, that also $b - a \not= 0$. Hence we compute

Thus we have to show that $d_ A(a, b - a) d_ A(b, b) = d_ A(b, b - a) d_ A(a, b)$. This is Lemma 42.68.38. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)