In this section we use the determinant to compare lattices. The key lemma is the following.
Proof.
First, note that the lemma holds in case l = 1. Namely, in this case x_1 is a basis of M over R/\mathfrak q and y_1 is a basis of N over R/\mathfrak q and we have \varphi (x_1) = fy_1 for some f \in R. Thus \varphi is injective if and only if f \not\in \mathfrak q. Moreover, \mathop{\mathrm{Coker}}(\varphi ) = R/(f, \mathfrak q) and hence the lemma holds by definition of \text{ord}_{R/q}(f) (see Algebra, Definition 10.121.2).
In fact, suppose more generally that \varphi (x_ i) = f_ iy_ i for some f_ i \in R, f_ i \not\in \mathfrak q. Then the induced maps
\langle x_1, \ldots , x_ i\rangle / \langle x_1, \ldots , x_{i - 1}\rangle \longrightarrow \langle y_1, \ldots , y_ i\rangle / \langle y_1, \ldots , y_{i - 1}\rangle
are all injective and have cokernels isomorphic to R/(f_ i, \mathfrak q). Hence we see that
\text{length}_ R(\mathop{\mathrm{Coker}}(\varphi )) = \sum \text{ord}_{R/\mathfrak q}(f_ i).
On the other hand it is clear that
[\varphi (x_1), \ldots , \varphi (x_ l)] = f_1 \ldots f_ l [y_1, \ldots , y_ l]
in this case from the admissible relation (b) for symbols. Hence we see the result holds in this case also.
We prove the general case by induction on l. Assume l > 1. Let i \in \{ 1, \ldots , l\} be minimal such that \varphi (x_1) \in \langle y_1, \ldots , y_ i\rangle . We will argue by induction on i. If i = 1, then we get a commutative diagram
\xymatrix{ 0 \ar[r] & \langle x_1 \rangle \ar[r] \ar[d] & \langle x_1, \ldots , x_ l \rangle \ar[r] \ar[d] & \langle x_1, \ldots , x_ l \rangle / \langle x_1 \rangle \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \langle y_1 \rangle \ar[r] & \langle y_1, \ldots , y_ l \rangle \ar[r] & \langle y_1, \ldots , y_ l \rangle / \langle y_1 \rangle \ar[r] & 0 }
and the lemma follows from the snake lemma and induction on l. Assume now that i > 1. Write \varphi (x_1) = a_1 y_1 + \ldots + a_{i - 1} y_{i - 1} + a y_ i with a_ j, a \in R and a \not\in \mathfrak q (since otherwise i was not minimal). Set
x'_ j = \left\{ \begin{matrix} x_ j
& \text{if}
& j = 1
\\ ax_ j
& \text{if}
& j \geq 2
\end{matrix} \right. \quad \text{and}\quad y'_ j = \left\{ \begin{matrix} y_ j
& \text{if}
& j < i
\\ ay_ j
& \text{if}
& j \geq i
\end{matrix} \right.
Let M' = \langle x'_1, \ldots , x'_ l \rangle and N' = \langle y'_1, \ldots , y'_ l \rangle . Since \varphi (x'_1) = a_1 y'_1 + \ldots + a_{i - 1} y'_{i - 1} + y'_ i by construction and since for j > 1 we have \varphi (x'_ j) = a\varphi (x_ i) \in \langle y'_1, \ldots , y'_ l\rangle we get a commutative diagram of R-modules and maps
\xymatrix{ M' \ar[d] \ar[r]_{\varphi '} & N' \ar[d] \\ M \ar[r]^\varphi & N }
By the result of the second paragraph of the proof we know that \text{length}_ R(M/M') = (l - 1)\text{ord}_{R/\mathfrak q}(a) and similarly \text{length}_ R(M/M') = (l - i + 1)\text{ord}_{R/\mathfrak q}(a). By a diagram chase this implies that
\text{length}_ R(\mathop{\mathrm{Coker}}(\varphi ')) = \text{length}_ R(\mathop{\mathrm{Coker}}(\varphi )) + i\ \text{ord}_{R/\mathfrak q}(a).
On the other hand, it is clear that writing
[\varphi (x_1), \ldots , \varphi (x_ l)] = f [y_1, \ldots , y_ l], \quad [\varphi '(x'_1), \ldots , \varphi (x'_ l)] = f' [y'_1, \ldots , y'_ l]
we have f' = a^ if. Hence it suffices to prove the lemma for the case that \varphi (x_1) = a_1y_1 + \ldots a_{i - 1}y_{i - 1} + y_ i, i.e., in the case that a = 1. Next, recall that
[y_1, \ldots , y_ l] = [y_1, \ldots , y_{i - 1}, a_1y_1 + \ldots a_{i - 1}y_{i - 1} + y_ i, y_{i + 1}, \ldots , y_ l]
by the admissible relations for symbols. The sequence y_1, \ldots , y_{i - 1}, a_1y_1 + \ldots + a_{i - 1}y_{i - 1} + y_ i, y_{i + 1}, \ldots , y_ l satisfies the conditions (3), (4) of the lemma also. Hence, we may actually assume that \varphi (x_1) = y_ i. In this case, note that we have \mathfrak q x_1 = 0 which implies also \mathfrak q y_ i = 0. We have
[y_1, \ldots , y_ l] = - [y_1, \ldots , y_{i - 2}, y_ i, y_{i - 1}, y_{i + 1}, \ldots , y_ l]
by the third of the admissible relations defining \det _{\kappa (\mathfrak q)}(N_{\mathfrak q}). Hence we may replace y_1, \ldots , y_ l by the sequence y'_1, \ldots , y'_ l = y_1, \ldots , y_{i - 2}, y_ i, y_{i - 1}, y_{i + 1}, \ldots , y_ l (which also satisfies conditions (3) and (4) of the lemma). Clearly this decreases the invariant i by 1 and we win by induction on i.
\square
To use the previous lemma we show that often sequences of elements with the required properties exist.
Here is the main result of this section. We will see below the various different consequences of this proposition. The reader is encouraged to first prove the easier Lemma 42.68.44 his/herself.
Proof.
We first reduce to the case t = 1 in the following way. Note that \text{Supp}(M) = \{ \mathfrak m, \mathfrak q_1, \ldots , \mathfrak q_ t\} , where \mathfrak m \subset R is the maximal ideal. Let M_ i denote the image of M \to M_{\mathfrak q_ i}, so \text{Supp}(M_ i) = \{ \mathfrak m, \mathfrak q_ i\} . The map \varphi (resp. \psi ) induces an R-module map \varphi _ i : M_ i \to M_ i (resp. \psi _ i : M_ i \to M_ i). Thus we get a morphism of (2, 1)-periodic complexes
(M, \varphi , \psi ) \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , t} (M_ i, \varphi _ i, \psi _ i).
The kernel and cokernel of this map have support contained in \{ \mathfrak m\} . Hence by Lemma 42.2.5 we have
e_ R(M, \varphi , \psi ) = \sum \nolimits _{i = 1, \ldots , t} e_ R(M_ i, \varphi _ i, \psi _ i)
On the other hand we clearly have M_{\mathfrak q_ i} = M_{i, \mathfrak q_ i}, and hence the terms of the right hand side of the formula of the lemma are equal to the expressions
\text{ord}_{R/\mathfrak q_ i}\left( \det \nolimits _{\kappa (\mathfrak q_ i)} (M_{i, \mathfrak q_ i}, \varphi _{i, \mathfrak q_ i}, \psi _{i, \mathfrak q_ i}) \right)
In other words, if we can prove the lemma for each of the modules M_ i, then the lemma holds. This reduces us to the case t = 1.
Assume we have a (2, 1)-periodic complex (M, \varphi , \psi ) over a Noetherian local ring with M a finite R-module, \text{Supp}(M) = \{ \mathfrak m, \mathfrak q\} , and finite length cohomology modules. The proof in this case follows from Lemma 42.68.41 and careful bookkeeping. Denote K_\varphi = \mathop{\mathrm{Ker}}(\varphi ), I_\varphi = \mathop{\mathrm{Im}}(\varphi ), K_\psi = \mathop{\mathrm{Ker}}(\psi ), and I_\psi = \mathop{\mathrm{Im}}(\psi ). Since R is Noetherian these are all finite R-modules. Set
a = \text{length}_{R_{\mathfrak q}}(I_{\varphi , \mathfrak q}) = \text{length}_{R_{\mathfrak q}}(K_{\psi , \mathfrak q}), \quad b = \text{length}_{R_{\mathfrak q}}(I_{\psi , \mathfrak q}) = \text{length}_{R_{\mathfrak q}}(K_{\varphi , \mathfrak q}).
Equalities because the complex becomes exact after localizing at \mathfrak q. Note that l = \text{length}_{R_{\mathfrak q}}(M_{\mathfrak q}) is equal to l = a + b.
We are going to use Lemma 42.68.42 to choose sequences of elements in finite R-modules N with support contained in \{ \mathfrak m, \mathfrak q\} . In this case N_{\mathfrak q} has finite length, say n \in \mathbf{N}. Let us call a sequence w_1, \ldots , w_ n \in N with properties (1) and (2) of Lemma 42.68.42 a “good sequence”. Note that the quotient N/\langle w_1, \ldots , w_ n \rangle of N by the submodule generated by a good sequence has support (contained in) \{ \mathfrak m\} and hence has finite length (Algebra, Lemma 10.62.3). Moreover, the symbol [w_1, \ldots , w_ n] \in \det _{\kappa (\mathfrak q)}(N_{\mathfrak q}) is a generator, see Lemma 42.68.5.
Having said this we choose good sequences
\begin{matrix} x_1, \ldots , x_ b
& \text{in}
& K_\varphi ,
& t_1, \ldots , t_ a
& \text{in}
& K_\psi ,
\\ y_1, \ldots , y_ a
& \text{in}
& I_\varphi \cap \langle t_1, \ldots t_ a\rangle ,
& s_1, \ldots , s_ b
& \text{in}
& I_\psi \cap \langle x_1, \ldots , x_ b\rangle .
\end{matrix}
We will adjust our choices a little bit as follows. Choose lifts \tilde y_ i \in M of y_ i \in I_\varphi and \tilde s_ i \in M of s_ i \in I_\psi . It may not be the case that \mathfrak q \tilde y_1 \subset \langle x_1, \ldots , x_ b\rangle and it may not be the case that \mathfrak q \tilde s_1 \subset \langle t_1, \ldots , t_ a\rangle . However, using that \mathfrak q is finitely generated (as in the proof of Lemma 42.68.42) we can find a d \in R, d \not\in \mathfrak q such that \mathfrak q d\tilde y_1 \subset \langle x_1, \ldots , x_ b\rangle and \mathfrak q d\tilde s_1 \subset \langle t_1, \ldots , t_ a\rangle . Thus after replacing y_ i by dy_ i, \tilde y_ i by d\tilde y_ i, s_ i by ds_ i and \tilde s_ i by d\tilde s_ i we see that we may assume also that x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ b and t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b are good sequences in M.
Finally, we choose a good sequence z_1, \ldots , z_ l in the finite R-module
\langle x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a \rangle \cap \langle t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b \rangle .
Note that this is also a good sequence in M.
Since I_{\varphi , \mathfrak q} = K_{\psi , \mathfrak q} there is a unique element h \in \kappa (\mathfrak q) such that [y_1, \ldots , y_ a] = h [t_1, \ldots , t_ a] inside \det _{\kappa (\mathfrak q)}(K_{\psi , \mathfrak q}). Similarly, as I_{\psi , \mathfrak q} = K_{\varphi , \mathfrak q} there is a unique element h \in \kappa (\mathfrak q) such that [s_1, \ldots , s_ b] = g [x_1, \ldots , x_ b] inside \det _{\kappa (\mathfrak q)}(K_{\varphi , \mathfrak q}). We can also do this with the three good sequences we have in M. All in all we get the following identities
\begin{align*} [y_1, \ldots , y_ a] & = h [t_1, \ldots , t_ a] \\ [s_1, \ldots , s_ b] & = g [x_1, \ldots , x_ b] \\ [z_1, \ldots , z_ l] & = f_\varphi [x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a] \\ [z_1, \ldots , z_ l] & = f_\psi [t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b] \end{align*}
for some g, h, f_\varphi , f_\psi \in \kappa (\mathfrak q).
Having set up all this notation let us compute \det _{\kappa (\mathfrak q)}(M, \varphi , \psi ). Namely, consider the element [z_1, \ldots , z_ l]. Under the map \gamma _\psi \circ \sigma \circ \gamma _\varphi ^{-1} of Definition 42.68.13 we have
\begin{eqnarray*} [z_1, \ldots , z_ l] & = & f_\varphi [x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a] \\ & \mapsto & f_\varphi [x_1, \ldots , x_ b] \otimes [y_1, \ldots , y_ a] \\ & \mapsto & f_\varphi h/g [t_1, \ldots , t_ a] \otimes [s_1, \ldots , s_ b] \\ & \mapsto & f_\varphi h/g [t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b] \\ & = & f_\varphi h/f_\psi g [z_1, \ldots , z_ l] \end{eqnarray*}
This means that \det _{\kappa (\mathfrak q)} (M_{\mathfrak q}, \varphi _{\mathfrak q}, \psi _{\mathfrak q}) is equal to f_\varphi h/f_\psi g up to a sign.
We abbreviate the following quantities
\begin{eqnarray*} k_\varphi & = & \text{length}_ R(K_\varphi /\langle x_1, \ldots , x_ b\rangle ) \\ k_\psi & = & \text{length}_ R(K_\psi /\langle t_1, \ldots , t_ a\rangle ) \\ i_\varphi & = & \text{length}_ R(I_\varphi /\langle y_1, \ldots , y_ a\rangle ) \\ i_\psi & = & \text{length}_ R(I_\psi /\langle s_1, \ldots , s_ a\rangle ) \\ m_\varphi & = & \text{length}_ R(M/ \langle x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a\rangle ) \\ m_\psi & = & \text{length}_ R(M/ \langle t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b\rangle ) \\ \delta _\varphi & = & \text{length}_ R( \langle x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a\rangle \langle z_1, \ldots , z_ l\rangle ) \\ \delta _\psi & = & \text{length}_ R( \langle t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b\rangle \langle z_1, \ldots , z_ l\rangle ) \end{eqnarray*}
Using the exact sequences 0 \to K_\varphi \to M \to I_\varphi \to 0 we get m_\varphi = k_\varphi + i_\varphi . Similarly we have m_\psi = k_\psi + i_\psi . We have \delta _\varphi + m_\varphi = \delta _\psi + m_\psi since this is equal to the colength of \langle z_1, \ldots , z_ l \rangle in M. Finally, we have
\delta _\varphi = \text{ord}_{R/\mathfrak q}(f_\varphi ), \quad \delta _\psi = \text{ord}_{R/\mathfrak q}(f_\psi )
by our first application of the key Lemma 42.68.41.
Next, let us compute the multiplicity of the periodic complex
\begin{eqnarray*} e_ R(M, \varphi , \psi ) & = & \text{length}_ R(K_\varphi /I_\psi ) - \text{length}_ R(K_\psi /I_\varphi ) \\ & = & \text{length}_ R( \langle x_1, \ldots , x_ b\rangle / \langle s_1, \ldots , s_ b\rangle ) + k_\varphi - i_\psi \\ & & - \text{length}_ R( \langle t_1, \ldots , t_ a\rangle / \langle y_1, \ldots , y_ a\rangle ) - k_\psi + i_\varphi \\ & = & \text{ord}_{R/\mathfrak q}(g/h) + k_\varphi - i_\psi - k_\psi + i_\varphi \\ & = & \text{ord}_{R/\mathfrak q}(g/h) + m_\varphi - m_\psi \\ & = & \text{ord}_{R/\mathfrak q}(g/h) + \delta _\psi - \delta _\varphi \\ & = & \text{ord}_{R/\mathfrak q}(f_\psi g/f_\varphi h) \end{eqnarray*}
where we used the key Lemma 42.68.41 twice in the third equality. By our computation of \det _{\kappa (\mathfrak q)} (M_{\mathfrak q}, \varphi _{\mathfrak q}, \psi _{\mathfrak q}) this proves the proposition.
\square
In most applications the following lemma suffices.
Comments (0)