Lemma 42.2.5. Let R be a ring. Let f : (M, \varphi , \psi ) \to (M', \varphi ', \psi ') be a map of (2, 1)-periodic complexes whose cohomology modules have finite length. If \mathop{\mathrm{Ker}}(f) and \mathop{\mathrm{Coker}}(f) have finite length, then e_ R(M, \varphi , \psi ) = e_ R(M', \varphi ', \psi ').
Proof. Apply the additivity of Lemma 42.2.3 and observe that (\mathop{\mathrm{Ker}}(f), \varphi , \psi ) and (\mathop{\mathrm{Coker}}(f), \varphi ', \psi ') have vanishing multiplicity by Lemma 42.2.4. \square
Comments (0)
There are also: