Proof.
Let us prove a coefficient ring exists. First we prove this in case the characteristic of the residue field $\kappa $ is zero. Namely, in this case we will prove by induction on $n > 0$ that there exists a section
\[ \varphi _ n : \kappa \longrightarrow R/\mathfrak m^ n \]
to the canonical map $R/\mathfrak m^ n \to \kappa = R/\mathfrak m$. This is trivial for $n = 1$. If $n > 1$, let $\varphi _{n - 1}$ be given. The field extension $\kappa /\mathbf{Q}$ is formally smooth by Proposition 10.158.9. Hence we can find the dotted arrow in the following diagram
\[ \xymatrix{ R/\mathfrak m^{n - 1} & R/\mathfrak m^ n \ar[l] \\ \kappa \ar[u]^{\varphi _{n - 1}} \ar@{..>}[ru] & \mathbf{Q} \ar[l] \ar[u] } \]
This proves the induction step. Putting these maps together
\[ \mathop{\mathrm{lim}}\nolimits _ n\ \varphi _ n : \kappa \longrightarrow R = \mathop{\mathrm{lim}}\nolimits _ n\ R/\mathfrak m^ n \]
gives a map whose image is the desired coefficient ring.
Next, we prove the existence of a coefficient ring in the case where the characteristic of the residue field $\kappa $ is $p > 0$. Namely, choose a Cohen ring $\Lambda $ with $\kappa = \Lambda /p\Lambda $, see Lemma 10.160.6. In this case we will prove by induction on $n > 0$ that there exists a map
\[ \varphi _ n : \Lambda /p^ n\Lambda \longrightarrow R/\mathfrak m^ n \]
whose composition with the reduction map $R/\mathfrak m^ n \to \kappa $ produces the given isomorphism $\Lambda /p\Lambda = \kappa $. This is trivial for $n = 1$. If $n > 1$, let $\varphi _{n - 1}$ be given. The ring map $\mathbf{Z}/p^ n\mathbf{Z} \to \Lambda /p^ n\Lambda $ is formally smooth by Lemma 10.160.7. Hence we can find the dotted arrow in the following diagram
\[ \xymatrix{ R/\mathfrak m^{n - 1} & R/\mathfrak m^ n \ar[l] \\ \Lambda /p^ n\Lambda \ar[u]^{\varphi _{n - 1}} \ar@{..>}[ru] & \mathbf{Z}/p^ n\mathbf{Z} \ar[l] \ar[u] } \]
This proves the induction step. Putting these maps together
\[ \mathop{\mathrm{lim}}\nolimits _ n\ \varphi _ n : \Lambda = \mathop{\mathrm{lim}}\nolimits _ n\ \Lambda /p^ n\Lambda \longrightarrow R = \mathop{\mathrm{lim}}\nolimits _ n\ R/\mathfrak m^ n \]
gives a map whose image is the desired coefficient ring.
The final statement of the theorem follows readily. Namely, if $y_1, \ldots , y_ n$ are generators of the ideal $\mathfrak m$, then we can use the map $\Lambda \to R$ just constructed to get a map
\[ \Lambda [[x_1, \ldots , x_ n]] \longrightarrow R, \quad x_ i \longmapsto y_ i. \]
Since both sides are $(x_1, \ldots , x_ n)$-adically complete this map is surjective by Lemma 10.96.1 as it is surjective modulo $(x_1, \ldots , x_ n)$ by construction.
$\square$
Comments (0)
There are also: