Remark 10.160.9. If $k$ is a field then the power series ring $k[[X_1, \ldots , X_ d]]$ is a Noetherian complete local regular ring of dimension $d$. If $\Lambda $ is a Cohen ring then $\Lambda [[X_1, \ldots , X_ d]]$ is a complete local Noetherian regular ring of dimension $d + 1$. Hence the Cohen structure theorem implies that any Noetherian complete local ring is a quotient of a regular local ring. In particular we see that a Noetherian complete local ring is universally catenary, see Lemma 10.105.9 and Lemma 10.106.3.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: