Lemma 42.69.6. Let (S, \delta ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Let \mathcal{F} be a coherent \mathcal{O}_ X-module. Let s \in \Gamma (X, \mathcal{K}_ X(\mathcal{L})) be a meromorphic section of \mathcal{L}. Assume
\dim _\delta (X) \leq k + 1,
X has no embedded points,
\mathcal{F} has no embedded associated points,
the support of \mathcal{F} is X, and
the section s is regular meromorphic.
In this situation let \mathcal{I} \subset \mathcal{O}_ X be the ideal of denominators of s, see Divisors, Definition 31.23.10. Then we have the following:
there are short exact sequences
\begin{matrix} 0
& \to
& \mathcal{I}\mathcal{F}
& \xrightarrow {1}
& \mathcal{F}
& \to
& \mathcal{Q}_1
& \to
& 0
\\ 0
& \to
& \mathcal{I}\mathcal{F}
& \xrightarrow {s}
& \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}
& \to
& \mathcal{Q}_2
& \to
& 0
\end{matrix}
the coherent sheaves \mathcal{Q}_1, \mathcal{Q}_2 are supported in \delta -dimension \leq k,
the section s restricts to a regular meromorphic section s_ i on every irreducible component X_ i of X of \delta -dimension k + 1, and
writing [\mathcal{F}]_{k + 1} = \sum m_ i[X_ i] we have
[\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = \sum m_ i(X_ i \to X)_*\text{div}_{\mathcal{L}|_{X_ i}}(s_ i)
in Z_ k(X), in particular
[\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1}
in \mathop{\mathrm{CH}}\nolimits _ k(X).
Proof.
Recall from Divisors, Lemma 31.24.5 the existence of injective maps 1 : \mathcal{I}\mathcal{F} \to \mathcal{F} and s : \mathcal{I}\mathcal{F} \to \mathcal{F} \otimes _{\mathcal{O}_ X}\mathcal{L} whose cokernels are supported on a closed nowhere dense subsets T. Denote \mathcal{Q}_ i there cokernels as in the lemma. We conclude that \dim _\delta (\text{Supp}(\mathcal{Q}_ i)) \leq k. By Divisors, Lemmas 31.23.5 and 31.23.8 the pullbacks s_ i are defined and are regular meromorphic sections for \mathcal{L}|_{X_ i}. The equality of cycles in (4) implies the equality of cycle classes in (4). Hence the only remaining thing to show is that
[\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = \sum m_ i(X_ i \to X)_*\text{div}_{\mathcal{L}|_{X_ i}}(s_ i)
holds in Z_ k(X). To see this, let Z \subset X be an integral closed subscheme of \delta -dimension k. Let \xi \in Z be the generic point. Let A = \mathcal{O}_{X, \xi } and M = \mathcal{F}_\xi . Moreover, choose a generator s_\xi \in \mathcal{L}_\xi . Then we can write s = (a/b) s_\xi where a, b \in A are nonzerodivisors. In this case I = \mathcal{I}_\xi = \{ x \in A \mid x(a/b) \in A\} . In this case the coefficient of [Z] in the left hand side is
\text{length}_ A(M/(a/b)IM) - \text{length}_ A(M/IM)
and the coefficient of [Z] in the right hand side is
\sum \text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i}) \text{ord}_{A/\mathfrak q_ i}(a/b)
where \mathfrak q_1, \ldots , \mathfrak q_ t are the minimal primes of the 1-dimensional local ring A. Hence the result follows from Lemma 42.69.5.
\square
Comments (0)