The Stacks project

Lemma 31.23.8. Let $f : X \to Y$ be a morphism of locally ringed spaces. Assume that pullbacks of meromorphic functions are defined for $f$ (see Definition 31.23.4).

  1. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ Y$-modules. There is a canonical pullback map $f^* : \Gamma (Y, \mathcal{K}_ Y(\mathcal{F})) \to \Gamma (X, \mathcal{K}_ X(f^*\mathcal{F}))$ for meromorphic sections of $\mathcal{F}$.

  2. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. A regular meromorphic section $s$ of $\mathcal{L}$ pulls back to a regular meromorphic section $f^*s$ of $f^*\mathcal{L}$.

Proof. Omitted. $\square$

Comments (0)

There are also:

  • 6 comment(s) on Section 31.23: Meromorphic functions and sections

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02OY. Beware of the difference between the letter 'O' and the digit '0'.