Lemma 115.23.5. Let (S, \delta ) be as in Chow Homology, Situation 42.7.1. Let X, Y be locally of finite type over S. Let f : X \to Y be a proper morphism. Let D \subset Y be an effective Cartier divisor. Assume X, Y integral, n = \dim _\delta (X) = \dim _\delta (Y) and f dominant. Then
In particular if f is birational then f_*[f^{-1}(D)]_{n - 1} = [D]_{n - 1}.
Comments (0)