Lemma 114.22.6. Let $(S, \delta )$ be as in Chow Homology, Situation 42.7.1. Let $X$ be locally of finite type over $S$. Assume $X$ integral with $\dim _\delta (X) = n$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $s$ be a nonzero meromorphic section of $\mathcal{L}$. Let $U \subset X$ be the maximal open subscheme such that $s$ corresponds to a section of $\mathcal{L}$ over $U$. There exists a projective morphism

$\pi : X' \longrightarrow X$

such that

1. $X'$ is integral,

2. $\pi |_{\pi ^{-1}(U)} : \pi ^{-1}(U) \to U$ is an isomorphism,

3. there exist effective Cartier divisors $D, E \subset X'$ such that

$\pi ^*\mathcal{L} = \mathcal{O}_{X'}(D - E),$
4. the meromorphic section $s$ corresponds, via the isomorphism above, to the meromorphic section $1_ D \otimes (1_ E)^{-1}$ (see Divisors, Definition 31.14.1),

5. we have

$\pi _*([D]_{n - 1} - [E]_{n - 1}) = \text{div}_\mathcal {L}(s)$

in $Z_{n - 1}(X)$.

Proof. Let $\mathcal{I} \subset \mathcal{O}_ X$ be the quasi-coherent ideal sheaf of denominators of $s$, see Divisors, Definition 31.23.10. By Divisors, Lemma 31.34.6 we get (2), (3), and (4). By Divisors, Lemma 31.32.9 we get (1). By Divisors, Lemma 31.32.13 the morphism $\pi$ is projective. We still have to prove (5). By Chow Homology, Lemma 42.26.3 we have

$\pi _*(\text{div}_{\mathcal{L}'}(s')) = \text{div}_\mathcal {L}(s).$

Hence it suffices to show that $\text{div}_{\mathcal{L}'}(s') = [D]_{n - 1} - [E]_{n - 1}$. This follows from the equality $s' = 1_ D \otimes 1_ E^{-1}$ and additivity, see Divisors, Lemma 31.27.5. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).