The Stacks project

Lemma 115.24.4. Let $(S, \delta )$ be as in Chow Homology, Situation 42.7.1. Let $X$ be locally of finite type over $S$. Assume $X$ integral and $\dim _\delta (X) = n$. Let $D$, $D'$ be effective Cartier divisors on $X$. Then

\[ D \cdot [D']_{n - 1} = D' \cdot [D]_{n - 1} \]

in $\mathop{\mathrm{CH}}\nolimits _{n - 2}(X)$.

First proof of Lemma 115.24.4. First, let us prove this in case $X$ is quasi-compact. In this case, apply Lemma 115.23.11 to $X$ and the two element set $\{ D, D'\} $ of effective Cartier divisors. Thus we get a proper morphism $b : X' \to X$, a finite collection of effective Cartier divisors $D'_ j \subset X'$ intersecting pairwise in codimension $\geq 2$, with $b^{-1}(D) = \sum n_ j D'_ j$, and $b^{-1}(D') = \sum m_ j D'_ j$. Note that $b_*[b^{-1}(D)]_{n - 1} = [D]_{n - 1}$ in $Z_{n - 1}(X)$ and similarly for $D'$, see Lemma 115.23.5. Hence, by Chow Homology, Lemma 42.26.4 we have

\[ D \cdot [D']_{n - 1} = b_*\left(b^{-1}(D) \cdot [b^{-1}(D')]_{n - 1}\right) \]

in $\mathop{\mathrm{CH}}\nolimits _{n - 2}(X)$ and similarly for the other term. Hence the lemma follows from the equality $b^{-1}(D) \cdot [b^{-1}(D')]_{n - 1} = b^{-1}(D') \cdot [b^{-1}(D)]_{n - 1}$ in $\mathop{\mathrm{CH}}\nolimits _{n - 2}(X')$ of Lemma 115.24.3.

Note that in the proof above, each referenced lemma works also in the general case (when $X$ is not assumed quasi-compact). The only minor change in the general case is that the morphism $b : U' \to U$ we get from applying Lemma 115.23.11 has as its target an open $U \subset X$ whose complement has codimension $\geq 3$. Hence by Chow Homology, Lemma 42.19.3 we see that $\mathop{\mathrm{CH}}\nolimits _{n - 2}(U) = \mathop{\mathrm{CH}}\nolimits _{n - 2}(X)$ and after replacing $X$ by $U$ the rest of the proof goes through unchanged. $\square$

Second proof of Lemma 115.24.4. Let $\mathcal{I} = \mathcal{O}_ X(-D)$ and $\mathcal{I}' = \mathcal{O}_ X(-D')$ be the invertible ideal sheaves of $D$ and $D'$. We denote $\mathcal{I}_{D'} = \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{O}_{D'}$ and $\mathcal{I}'_ D = \mathcal{I}' \otimes _{\mathcal{O}_ X} \mathcal{O}_ D$. We can restrict the inclusion map $\mathcal{I} \to \mathcal{O}_ X$ to $D'$ to get a map

\[ \varphi : \mathcal{I}_{D'} \longrightarrow \mathcal{O}_{D'} \]

and similarly

\[ \psi : \mathcal{I}'_ D \longrightarrow \mathcal{O}_ D \]

It is clear that

\[ \mathop{\mathrm{Coker}}(\varphi ) \cong \mathcal{O}_{D \cap D'} \cong \mathop{\mathrm{Coker}}(\psi ) \]


\[ \mathop{\mathrm{Ker}}(\varphi ) \cong \frac{\mathcal{I} \cap \mathcal{I}'}{\mathcal{I}\mathcal{I}'} \cong \mathop{\mathrm{Ker}}(\psi ). \]

Hence we see that

\[ \gamma = [\mathcal{I}_{D'}] - [\mathcal{O}_{D'}] = [\mathcal{I}'_ D] - [\mathcal{O}_ D] \]

in $K_0(\textit{Coh}_{\leq n - 1}(X))$. On the other hand it is clear that

\[ [\mathcal{I}'_ D]_{n - 1} = [D]_{n - 1}, \quad [\mathcal{I}_{D'}]_{n - 1} = [D']_{n - 1}. \]

and that

\[ \mathcal{O}_ X(D') \otimes \mathcal{I}'_ D = \mathcal{O}_ D, \quad \mathcal{O}_ X(D) \otimes \mathcal{I}_{D'} = \mathcal{O}_{D'}. \]

By Chow Homology, Lemma 42.69.7 (applied two times) this means that the element $\gamma $ is an element of $B_{n - 2}(X)$, and maps to both $c_1(\mathcal{O}_ X(D')) \cap [D]_{n - 1}$ and to $c_1(\mathcal{O}_ X(D)) \cap [D']_{n - 1}$ and we win (since the map $B_{n - 2}(X) \to \mathop{\mathrm{CH}}\nolimits _{n - 2}(X)$ is well defined – which is the key to this proof). $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02TF. Beware of the difference between the letter 'O' and the digit '0'.