Lemma 35.20.28. The property $\mathcal{P}(f) =$“$f$ is unramified” is fpqc local on the base. The property $\mathcal{P}(f) =$“$f$ is G-unramified” is fpqc local on the base.

**Proof.**
A morphism is unramified (resp. G-unramified) if and only if it is locally of finite type (resp. finite presentation) and its diagonal morphism is an open immersion (see Morphisms, Lemma 29.35.13). We have seen already that being locally of finite type (resp. locally of finite presentation) and an open immersion is fpqc local on the base (Lemmas 35.20.11, 35.20.10, and 35.20.16). Hence the result follows formally.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: