Lemma 39.22.1. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid over $S$. Let $G \to U$ be the stabilizer group scheme. The commutative diagram
the two left horizontal arrows are isomorphisms and the right square is a fibre product square.
This really means conditions on the morphism $j : R \to U \times _ S U$ when given a groupoid $(U, R, s, t, c)$ over $S$. As in the previous section we first formulate the corresponding diagram.
Lemma 39.22.1. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid over $S$. Let $G \to U$ be the stabilizer group scheme. The commutative diagram the two left horizontal arrows are isomorphisms and the right square is a fibre product square.
Proof. Omitted. Exercise in the definitions and the functorial point of view in algebraic geometry. $\square$
Lemma 39.22.2. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid over $S$. Let $G \to U$ be the stabilizer group scheme.
The following are equivalent
$j : R \to U \times _ S U$ is separated,
$G \to U$ is separated, and
$e : U \to G$ is a closed immersion.
The following are equivalent
$j : R \to U \times _ S U$ is quasi-separated,
$G \to U$ is quasi-separated, and
$e : U \to G$ is quasi-compact.
Proof. The group scheme $G \to U$ is the base change of $R \to U \times _ S U$ by the diagonal morphism $U \to U \times _ S U$, see Lemma 39.17.1. Hence if $j$ is separated (resp. quasi-separated), then $G \to U$ is separated (resp. quasi-separated). (See Schemes, Lemma 26.21.12). Thus (a) $\Rightarrow $ (b) in both (1) and (2).
If $G \to U$ is separated (resp. quasi-separated), then the morphism $U \to G$, as a section of the structure morphism $G \to U$ is a closed immersion (resp. quasi-compact), see Schemes, Lemma 26.21.11. Thus (b) $\Rightarrow $ (a) in both (1) and (2).
By the result of Lemma 39.22.1 (and Schemes, Lemmas 26.18.2 and 26.19.3) we see that if $e$ is a closed immersion (resp. quasi-compact) $\Delta _{R/U \times _ S U}$ is a closed immersion (resp. quasi-compact). Thus (c) $\Rightarrow $ (a) in both (1) and (2). $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)