Lemma 80.3.4. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $F, G : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$. Let $a : F \to G$ be representable by algebraic spaces. If $G$ is a sheaf, then so is $F$.

Proof. (Same as the proof of Spaces, Lemma 65.3.5.) Let $\{ \varphi _ i : T_ i \to T\}$ be a covering of the site $(\mathit{Sch}/S)_{fppf}$. Let $s_ i \in F(T_ i)$ which satisfy the sheaf condition. Then $\sigma _ i = a(s_ i) \in G(T_ i)$ satisfy the sheaf condition also. Hence there exists a unique $\sigma \in G(T)$ such that $\sigma _ i = \sigma |_{T_ i}$. By assumption $F' = h_ T \times _{\sigma , G, a} F$ is a sheaf. Note that $(\varphi _ i, s_ i) \in F'(T_ i)$ satisfy the sheaf condition also, and hence come from some unique $(\text{id}_ T, s) \in F'(T)$. Clearly $s$ is the section of $F$ we are looking for. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).