Lemma 80.3.3. Let S be a scheme. Let
\xymatrix{ G' \times _ G F \ar[r] \ar[d]^{a'} & F \ar[d]^ a \\ G' \ar[r] & G }
be a fibre square of presheaves on (\mathit{Sch}/S)_{fppf}. If a is representable by algebraic spaces so is a'.
A base change of a representable by algebraic spaces morphism of presheaves is representable by algebraic spaces.
Lemma 80.3.3. Let S be a scheme. Let
be a fibre square of presheaves on (\mathit{Sch}/S)_{fppf}. If a is representable by algebraic spaces so is a'.
Proof. Omitted. Hint: This is formal. \square
Comments (1)
Comment #894 by Kestutis Cesnavicius on