Processing math: 100%

The Stacks project

Lemma 65.14.6. Notation and assumptions as in Lemma 65.14.3. If \mathop{\mathrm{Spec}}(k) \to U/G is a morphism, then there exist

  1. a finite Galois extension k'/k,

  2. a finite subgroup H \subset G,

  3. an isomorphism H \to \text{Gal}(k'/k), and

  4. an H-equivariant morphism \mathop{\mathrm{Spec}}(k') \to U.

Conversely, such data determine a morphism \mathop{\mathrm{Spec}}(k) \to U/G.

Proof. Consider the fibre product V = \mathop{\mathrm{Spec}}(k) \times _{U/G} U. Here is a diagram

\xymatrix{ V \ar[r] \ar[d] & U \ar[d] \\ \mathop{\mathrm{Spec}}(k) \ar[r] & U/G }

Then V is a nonempty scheme étale over \mathop{\mathrm{Spec}}(k) and hence is a disjoint union V = \coprod _{i \in I} \mathop{\mathrm{Spec}}(k_ i) of spectra of fields k_ i finite separable over k (Morphisms, Lemma 29.36.7). We have

\begin{align*} V \times _{\mathop{\mathrm{Spec}}(k)} V & = (\mathop{\mathrm{Spec}}(k) \times _{U/G} U) \times _{\mathop{\mathrm{Spec}}(k)}(\mathop{\mathrm{Spec}}(k) \times _{U/G} U) \\ & = \mathop{\mathrm{Spec}}(k) \times _{U/G} U \times _{U/G} U \\ & = \mathop{\mathrm{Spec}}(k) \times _{U/G} U \times G \\ & = V \times G \end{align*}

The action of G on U induces an action of a : G \times V \to V. The displayed equality means that G \times V \to V \times _{\mathop{\mathrm{Spec}}(k)} V, (g, v) \mapsto (a(g, v), v) is an isomorphism. In particular we see that for every i we have an isomorphism H_ i \times \mathop{\mathrm{Spec}}(k_ i) \to \mathop{\mathrm{Spec}}(k_ i \otimes _ k k_ i) where H_ i \subset G is the subgroup of elements fixing i \in I. Thus H_ i is finite and is the Galois group of k_ i/k. We omit the converse construction. \square


Comments (0)

There are also:

  • 9 comment(s) on Section 65.14: Examples of algebraic spaces

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.