## 8.9 Stackification of categories fibred in groupoids

Here is the result.

Lemma 8.9.1. Let $\mathcal{C}$ be a site. Let $p : \mathcal{S} \to \mathcal{C}$ be a category fibred in groupoids over $\mathcal{C}$. There exists a stack in groupoids $p' : \mathcal{S}' \to \mathcal{C}$ and a $1$-morphism $G : \mathcal{S} \to \mathcal{S}'$ of categories fibred in groupoids over $\mathcal{C}$ (see Categories, Definition 4.35.6) such that

for every $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, and any $x, y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U)$ the map

\[ \mathit{Mor}(x, y) \longrightarrow \mathit{Mor}(G(x), G(y)) \]

induced by $G$ identifies the right hand side with the sheafification of the left hand side, and

for every $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, and any $x' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}'_ U)$ there exists a covering $\{ U_ i \to U\} _{i \in I}$ such that for every $i \in I$ the object $x'|_{U_ i}$ is in the essential image of the functor $G : \mathcal{S}_{U_ i} \to \mathcal{S}'_{U_ i}$.

Moreover the stack in groupoids $\mathcal{S}'$ is determined up to unique $2$-isomorphism by these conditions.

**Proof.**
Apply Lemma 8.8.1. The result will be a stack in groupoids by applying Lemma 8.5.2.
$\square$

Lemma 8.9.2. Let $\mathcal{C}$ be a site. Let $p : \mathcal{S} \to \mathcal{C}$ be a category fibred in groupoids over $\mathcal{C}$. Let $p' : \mathcal{S}' \to \mathcal{C}$ and $G : \mathcal{S} \to \mathcal{S}'$ the stack in groupoids and $1$-morphism constructed in Lemma 8.9.1. This construction has the following universal property: Given a stack in groupoids $q : \mathcal{X} \to \mathcal{C}$ and a $1$-morphism $F : \mathcal{S} \to \mathcal{X}$ of categories over $\mathcal{C}$ there exists a $1$-morphism $H : \mathcal{S}' \to \mathcal{X}$ such that the diagram

\[ \xymatrix{ \mathcal{S} \ar[rr]_ F \ar[rd]_ G & & \mathcal{X} \\ & \mathcal{S}' \ar[ru]_ H } \]

is $2$-commutative.

**Proof.**
This is a special case of Lemma 8.8.2.
$\square$

Lemma 8.9.3. Let $\mathcal{C}$ be a site. Let $f : \mathcal{X} \to \mathcal{Y}$ and $g : \mathcal{Z} \to \mathcal{Y}$ be morphisms of categories fibred in groupoids over $\mathcal{C}$. In this case the stackification of the $2$-fibre product is the $2$-fibre product of the stackifications.

**Proof.**
This is a special case of Lemma 8.8.4.
$\square$

## Comments (0)