Lemma 94.6.4. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$ Let $f : \mathcal{X} \to \mathcal{Y}$ be a representable $1$-morphism. Let $g : \mathcal{Z} \to \mathcal{Y}$ be any $1$-morphism. Consider the fibre product diagram
Then the base change $f'$ is a representable $1$-morphism.
Comments (0)