Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 94.6.5. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}_ i, \mathcal{Y}_ i$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$, $i = 1, 2$. Let $f_ i : \mathcal{X}_ i \to \mathcal{Y}_ i$, $i = 1, 2$ be representable $1$-morphisms. Then

\[ f_1 \times f_2 : \mathcal{X}_1 \times \mathcal{X}_2 \longrightarrow \mathcal{Y}_1 \times \mathcal{Y}_2 \]

is a representable $1$-morphism.

Proof. Write $f_1 \times f_2$ as the composition $\mathcal{X}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1 \times \mathcal{Y}_2$. The first arrow is the base change of $f_1$ by the map $\mathcal{Y}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1$, and the second arrow is the base change of $f_2$ by the map $\mathcal{Y}_1 \times \mathcal{Y}_2 \to \mathcal{Y}_2$. Hence this lemma is a formal consequence of Lemmas 94.6.3 and 94.6.4. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.